Switch to: Citations

Add references

You must login to add references.
  1. How probable is an infinite sequence of heads?Timothy Williamson - 2007 - Analysis 67 (3):173-180.
    Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so on for other (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • How probable is an infinite sequence of heads?Timothy Williamson - 2007 - Analysis 67 (3):173-180.
    Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so on for other (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Popper Functions, Uniform Distributions and Infinite Sequences of Heads.Alexander R. Pruss - 2015 - Journal of Philosophical Logic 44 (3):259-271.
    Popper functions allow one to take conditional probabilities as primitive instead of deriving them from unconditional probabilities via the ratio formula P=P/P. A major advantage of this approach is it allows one to condition on events of zero probability. I will show that under plausible symmetry conditions, Popper functions often fail to do what they were supposed to do. For instance, suppose we want to define the Popper function for an isometrically invariant case in two dimensions and hence require the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Regular probability comparisons imply the Banach–Tarski Paradox.Alexander R. Pruss - 2014 - Synthese 191 (15):3525-3540.
    Consider the regularity thesis that each possible event has non-zero probability. Hájek challenges this in two ways: there can be nonmeasurable events that have no probability at all and on a large enough sample space, some probabilities will have to be zero. But arguments for the existence of nonmeasurable events depend on the axiom of choice. We shall show that the existence of anything like regular probabilities is by itself enough to imply a weak version of AC sufficient to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Null probability, dominance and rotation.A. R. Pruss - 2013 - Analysis 73 (4):682-685.
    New arguments against Bayesian regularity and an otherwise plausible domination principle are offered on the basis of rotational symmetry. The arguments against Bayesian regularity work in very general settings.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2019 - European Journal for Philosophy of Science 9 (1):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson and Benci et al. have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2018 - European Journal for Philosophy of Science 9 (1):8.
    A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Correction to John D. Norton “How to build an infinite lottery machine”.John D. Norton & Alexander R. Pruss - 2018 - European Journal for Philosophy of Science 8 (1):143-144.
    An infinite lottery machine is used as a foil for testing the reach of inductive inference, since inferences concerning it require novel extensions of probability. Its use is defensible if there is some sense in which the lottery is physically possible, even if exotic physics is needed. I argue that exotic physics is needed and describe several proposals that fail and at least one that succeeds well enough.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • You say you want a revolution: two notions of probabilistic independence.Alexander Meehan - 2021 - Philosophical Studies 178 (10):3319-3351.
    Branden Fitelson and Alan Hájek have suggested that it is finally time for a “revolution” in which we jettison Kolmogorov’s axiomatization of probability, and move to an alternative like Popper’s. According to these authors, not only did Kolmogorov fail to give an adequate analysis of conditional probability, he also failed to give an adequate account of another central notion in probability theory: probabilistic independence. This paper defends Kolmogorov, with a focus on this independence charge. I show that Kolmogorov’s sophisticated theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Regularity and infinitely tossed coins.Colin Howson - 2017 - European Journal for Philosophy of Science 7 (1):97-102.
    Timothy Williamson has claimed to prove that regularity must fail even in a nonstandard setting, with a counterexample based on tossing a fair coin infinitely many times. I argue that Williamson’s argument is mistaken, and that a corrected version shows that it is not regularity which fails in the non-standard setting but a fundamental property of shifts in Bernoulli processes.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • What conditional probability could not be.Alan Hájek - 2003 - Synthese 137 (3):273--323.
    Kolmogorov''s axiomatization of probability includes the familiarratio formula for conditional probability: 0).$$ " align="middle" border="0">.
    Download  
     
    Export citation  
     
    Bookmark   310 citations  
  • Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations