Switch to: Citations

Add references

You must login to add references.
  1. The Tyranny of Scales.Robert W. Batterman - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA. pp. 255-286.
    This paper examines a fundamental problem in applied mathematics. How can one model the behavior of materials that display radically different, dominant behaviors at different length scales. Although we have good models for material behaviors at small and large scales, it is often hard to relate these scale-based models to one another. Macroscale models represent the integrated effects of very subtle factors that are practically invisible at the smallest, atomic, scales. For this reason it has been notoriously difficult to model (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Reconstructing Reality: Models, Mathematics, and Simulations.Margaret Morrison - 2014 - New York, US: Oup Usa.
    The book examines issues related to the way modeling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Minimal Model Explanations.Robert W. Batterman & Collin C. Rice - 2014 - Philosophy of Science 81 (3):349-376.
    This article discusses minimal model explanations, which we argue are distinct from various causal, mechanical, difference-making, and so on, strategies prominent in the philosophical literature. We contend that what accounts for the explanatory power of these models is not that they have certain features in common with real systems. Rather, the models are explanatory because of a story about why a class of systems will all display the same large-scale behavior because the details that distinguish them are irrelevant. This story (...)
    Download  
     
    Export citation  
     
    Bookmark   179 citations  
  • Reassessing Woodward’s Account of Explanation: Regularities, Counterfactuals, and Noncausal Explanations.Juha Saatsi & Mark Pexton - 2013 - Philosophy of Science 80 (5):613-624.
    We reassess Woodward’s counterfactual account of explanation in relation to regularity explananda. Woodward presents an account of causal explanation. We argue, by using an explanation of Kleiber’s law to illustrate, that the account can also cover some noncausal explanations. This leads to a tension between the two key aspects of Woodward’s account: the counterfactual aspect and the causal aspect. We explore this tension and make a case for jettisoning the causal aspect as constitutive of explanatory power in connection with regularity (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Idealization and the Aims of Science.Angela Potochnik - 2017 - Chicago: University of Chicago Press.
    Science is the study of our world, as it is in its messy reality. Nonetheless, science requires idealization to function—if we are to attempt to understand the world, we have to find ways to reduce its complexity. Idealization and the Aims of Science shows just how crucial idealization is to science and why it matters. Beginning with the acknowledgment of our status as limited human agents trying to make sense of an exceedingly complex world, Angela Potochnik moves on to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • The Explanatory Force of Dynamical and Mathematical Models in Neuroscience: A Mechanistic Perspective.David Michael Kaplan & Carl F. Craver - 2011 - Philosophy of Science 78 (4):601-627.
    We argue that dynamical and mathematical models in systems and cognitive neuro- science explain (rather than redescribe) a phenomenon only if there is a plausible mapping between elements in the model and elements in the mechanism for the phe- nomenon. We demonstrate how this model-to-mechanism-mapping constraint, when satisfied, endows a model with explanatory force with respect to the phenomenon to be explained. Several paradigmatic models including the Haken-Kelso-Bunz model of bimanual coordination and the difference-of-Gaussians model of visual receptive fields are (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • How scientific models can explain.Alisa Bokulich - 2011 - Synthese 180 (1):33 - 45.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the (...)
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1666 citations  
  • (1 other version)The devil in the details: asymptotic reasoning in explanation, reduction, and emergence.Robert W. Batterman - 2002 - New York: Oxford University Press.
    Robert Batterman examines a form of scientific reasoning called asymptotic reasoning, arguing that it has important consequences for our understanding of the scientific process as a whole. He maintains that asymptotic reasoning is essential for explaining what physicists call universal behavior. With clarity and rigor, he simplifies complex questions about universal behavior, demonstrating a profound understanding of the underlying structures that ground them. This book introduces a valuable new method that is certain to fill explanatory gaps across disciplines.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • (1 other version)Explaining the brain: mechanisms and the mosaic unity of neuroscience.Carl F. Craver - 2007 - New York : Oxford University Press,: Oxford University Press, Clarendon Press.
    Carl Craver investigates what we are doing when we sue neuroscience to explain what's going on in the brain.
    Download  
     
    Export citation  
     
    Bookmark   624 citations  
  • Universality Reduced.Alexander Franklin - 2019 - Philosophy of Science 86 (5):1295-1306.
    The universality of critical phenomena is best explained by appeal to the Renormalisation Group (RG). Batterman and Morrison, among others, have claimed that this explanation is irreducible. I argue that the RG account is reducible, but that the higher-level explanation ought not to be eliminated. I demonstrate that the key assumption on which the explanation relies – the scale invariance of critical systems – can be explained in lower-level terms; however, we should not replace the RG explanation with a bottom-up (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis.Sara Green & Robert Batterman - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 7161:20-34.
    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Models Don’t Decompose That Way: A Holistic View of Idealized Models.Collin Rice - 2019 - British Journal for the Philosophy of Science 70 (1):179-208.
    Many accounts of scientific modelling assume that models can be decomposed into the contributions made by their accurate and inaccurate parts. These accounts then argue that the inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I argue that this decompositional strategy requires three assumptions that are not typically met by our best scientific models. In response, I propose an alternative view in which idealized models are characterized as holistically distorted representations that (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Autonomy of Theories: An Explanatory Problem.Robert W. Batterman - 2018 - Noûs:858-873.
    This paper aims to draw attention to an explanatory problem posed by the existence of multiply realized or universal behavior exhibited by certain physical systems. The problem is to explain how it is possible that systems radically distinct at lower-scales can nevertheless exhibit identical or nearly identical behavior at upper-scales. Theoretically this is reflected by the fact that continuum theories such as fluid mechanics are spectacularly successful at predicting, describing, and explaining fluid behaviors despite the fact that they do not (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Self-organized criticality: emergent complex behavior in physical and biological systems.Henrik Jeldtoft Jensen - 1998 - New York: Cambridge University Press.
    Self-organized criticality (SOC) is based upon the idea that complex behavior can develop spontaneously in certain multi-body systems whose dynamics vary abruptly. This book is a clear and concise introduction to the field of self-organized criticality, and contains an overview of the main research results. The author begins with an examination of what is meant by SOC, and the systems in which it can occur. He then presents and analyzes computer models to describe a number of systems, and he explains (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Self-organised criticality—what it is and what it isn’t.Roman Frigg - 2003 - Studies in History and Philosophy of Science Part A 34 (3):613-632.
    The last decade and a half has seen an ardent development of self-organised criticality, a new approach to complex systems, which has become important in many domains of natural as well as social science, such as geology, biology, astronomy, and economics, to mention just a few. This has led many to adopt a generalist stance towards SOC, which is now repeatedly claimed to be a universal theory of complex behaviour. The aim of this paper is twofold. First, I provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • How Nature Works: The Science of Self-Organized Criticality.Per Bak - 1996 - Copernicus.
    Self-organized criticality, the spontaneous development of systems to a critical state, is the first general theory of complex systems with a firm mathematical basis. This theory describes how many seemingly desperate aspects of the world, from stock market crashes to mass extinctions, avalanches to solar flares, all share a set of simple, easily described properties. "...a'must read'...Bak writes with such ease and lucidity, and his ideas are so intriguing...essential reading for those interested in complex systems...it will reward a sufficiently skeptical (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Science in the age of computer simulation.Eric Winsberg - 2010 - Chicago: University of Chicago Press.
    Introduction -- Sanctioning models : theories and their scope -- Methodology for a virtual world -- A tale of two methods -- When theories shake hands -- Models of climate : values and uncertainties -- Reliability without truth -- Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • Causation in biology: Stability, specificity, and the choice of levels of explanation.James Woodward - 2010 - Biology and Philosophy 25 (3):287-318.
    This paper attempts to elucidate three characteristics of causal relationships that are important in biological contexts. Stability has to do with whether a causal relationship continues to hold under changes in background conditions. Proportionality has to do with whether changes in the state of the cause “line up” in the right way with changes in the state of the effect and with whether the cause and effect are characterized in a way that contains irrelevant detail. Specificity is connected both to (...)
    Download  
     
    Export citation  
     
    Bookmark   274 citations  
  • When mechanistic models explain.Carl F. Craver - 2006 - Synthese 153 (3):355-376.
    Not all models are explanatory. Some models are data summaries. Some models sketch explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to conjecture a how-possibly explanation without regard to whether it is a how-actually explanation. I use the Hodgkin and Huxley model of the action potential to illustrate these ways that models can be useful without explaining. I then use the subsequent development of the explanation of the action potential to show what is (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Universality and RG Explanations.Robert W. Batterman - 2019 - Perspectives on Science 27 (1):26-47.
    In its broadest sense, "universality" is a technical term for something quite ordinary. It refers to the existence of patterns of behavior by physical systems that recur and repeat despite the fact that in some sense the situations in which these patterns recur and repeat are different. Rainbows, for example, always exhibit the same pattern of spacings and intensities of their bows despite the fact that the rain showers are different on each occasion. They are different because the shapes of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The New Mechanical Philosophy.Stuart Glennan - 2017 - Oxford: Oxford University Press.
    This volume argues for a new image of science that understands both natural and social phenomena to be the product of mechanisms, casting the work of science as an effort to understand those mechanisms. Glennan offers an account of the nature of mechanisms and of the models used to represent them in physical, life, and social sciences.
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Handshaking Your Way to the Top: Simulation at the Nanoscale.Eric Winsberg - 2006 - Philosophy of Science 73 (5):582-594.
    Should philosophers of science be paying attention to developments in "nanoscience"? Undoubtedly, it is too early to tell for sure. The goal of this paper is to take a preliminary look. In particular, I look at the use of computational models in the study of nano-sized solid-state materials. What I find is that there are features of these models that appear on their face to be at odds with some basic philosophical intuitions about the relationships between different theories and between (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Depth: An Account of Scientific Explanation.Michael Strevens - 2008 - Cambridge: Harvard University Press.
    Approaches to explanation -- Causal and explanatory relevance -- The kairetic account of /D making -- The kairetic account of explanation -- Extending the kairetic account -- Event explanation and causal claims -- Regularity explanation -- Abstraction in regularity explanation -- Approaches to probabilistic explanation -- Kairetic explanation of frequencies -- Kairetic explanation of single outcomes -- Looking outward -- Looking inward.
    Download  
     
    Export citation  
     
    Bookmark   484 citations  
  • Universality and Modeling Limiting Behaviors.Collin Rice - 2020 - Philosophy of Science 87 (5):829-840.
    Most attempts to justify the use of idealized models to explain appeal to the accuracy of the model with respect to difference-making causes. In this article, I argue for an alternative way to just...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Turbulence, emergence and multi-scale modelling.Margaret Morrison - 2018 - Synthese 198 (Suppl 24):5963-5985.
    The paper begins with a generic discussion of modelling, focusing on some of its practices and problems. I then move on to a philosophical discussion about emergence and multi-scale modelling; more specifically, the reasons why what looks like a promising strategy for dealing with emergence is sometimes incapable of delivering interesting results. This becomes especially evident when we look more closely at turbulence and what I take to be the main ontological feature of emergent behavior—universality. Finally, I conclude by showing (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Conceptual strategies and inter-theory relations: The case of nanoscale cracks.Julia R. Bursten - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:158-165.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Idealized models, holistic distortions, and universality.Collin Rice - 2018 - Synthese 195 (6):2795-2819.
    In this paper, I first argue against various attempts to justify idealizations in scientific models that explain by showing that they are harmless and isolable distortions of irrelevant features. In response, I propose a view in which idealized models are characterized as providing holistically distorted representations of their target system. I then suggest an alternative way that idealized modeling can be justified by appealing to universality.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Self-organized criticality.P. Bak & K. Chen - 1991 - Scientific American 264 (1):46–53.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Theories of matter: Infinities and renormalization.Leop Kadanoff - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA. pp. 141.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Handshaking your way to the top: Inconsistency and falsification in intertheoretic reduction.Eric Winsberg - 2006 - In Borchert (ed.), Philosophy of Science. MacMillan. pp. 73--582.
    Download  
     
    Export citation  
     
    Bookmark   7 citations