Switch to: Citations

Add references

You must login to add references.
  1. Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • A subject with no object: strategies for nominalistic interpretation of mathematics.John P. Burgess & Gideon Rosen - 1997 - New York: Oxford University Press. Edited by Gideon A. Rosen.
    Numbers and other mathematical objects are exceptional in having no locations in space or time or relations of cause and effect. This makes it difficult to account for the possibility of the knowledge of such objects, leading many philosophers to embrace nominalism, the doctrine that there are no such objects, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. This book cuts through a host of technicalities that have obscured previous (...)
    Download  
     
    Export citation  
     
    Bookmark   155 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • (1 other version)The Foundations of Geometry.David Hilbert - 1899 - Open Court Company (This Edition Published 1921).
    §30. Significance of Desargues's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CHAPTER VI. PASCAL'S THEOREM. §31. ...
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • A Subject with no Object.Zoltan Gendler Szabo, John P. Burgess & Gideon Rosen - 1999 - Philosophical Review 108 (1):106.
    This is the first systematic survey of modern nominalistic reconstructions of mathematics, and for this reason alone it should be read by everyone interested in the philosophy of mathematics and, more generally, in questions concerning abstract entities. In the bulk of the book, the authors sketch a common formal framework for nominalistic reconstructions, outline three major strategies such reconstructions can follow, and locate proposals in the literature with respect to these strategies. The discussion is presented with admirable precision and clarity, (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Tarski's system of geometry.Alfred Tarski & Steven Givant - 1999 - Bulletin of Symbolic Logic 5 (2):175-214.
    This paper is an edited form of a letter written by the two authors (in the name of Tarski) to Wolfram Schwabhäuser around 1978. It contains extended remarks about Tarski's system of foundations for Euclidean geometry, in particular its distinctive features, its historical evolution, the history of specific axioms, the questions of independence of axioms and primitive notions, and versions of the system suitable for the development of 1-dimensional geometry.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Mathematical Thought and its Objects.Charles Parsons - 2007 - New York: Cambridge University Press.
    Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)Philosophy of Mathematics.Stewart Shapiro - 2003 - In Peter Clark & Katherine Hawley (eds.), Philosophy of science today. New York: Oxford University Press.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • What is Mathematics? [REVIEW]E. N. - 1942 - Journal of Philosophy 39 (8):221-221.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • (2 other versions)A Subject with No Object. Strategies for Nominalistic Interpretations of Mathematics.John P. Burgess & Gideon Rosen - 1999 - Noûs 33 (3):505-516.
    Download  
     
    Export citation  
     
    Bookmark   45 citations