Switch to: References

Citations of:

Philosophy of Mathematics: Structure and Ontology

Oxford, England: Oxford University Press USA (1997)

Add citations

You must login to add citations.
  1. Number Concepts: An Interdisciplinary Inquiry.Richard Samuels & Eric Snyder - 2024 - Cambridge University Press.
    This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The psychopathology of metaphysics.Billon Alexandre - 2024 - Metaphilosophy 1 (01):1-28.
    According to a common philosophical intuition, the deep nature of things is hidden from us, and the world as we know it through perception and science is somehow shallow and lacking in reality. For all we knwo, the intuition goes, we could be living in a cave facing shadows, in a dream or even in a computer simulation, This “intuition of unreality” clashes with a strong, but perhaps more naive, intuition to the effect that the world as we know it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deductivism in the Philosophy of Mathematics.Alexander Paseau & Fabian Pregel - 2023 - Stanford Encyclopedia of Philosophy 2023.
    Deductivism says that a mathematical sentence s should be understood as expressing the claim that s deductively follows from appropriate axioms. For instance, deductivists might construe “2+2=4” as “the sentence ‘2+2=4’ deductively follows from the axioms of arithmetic”. Deductivism promises a number of benefits. It captures the fairly common idea that mathematics is about “what can be deduced from the axioms”; it avoids an ontology of abstract mathematical objects; and it maintains that our access to mathematical truths requires nothing beyond (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is this assumption as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The structuralist approach to underdetermination.Chanwoo Lee - 2022 - Synthese 200 (2):1-25.
    This paper provides an exposition of the structuralist approach to underdetermination, which aims to resolve the underdetermination of theories by identifying their common theoretical structure. Applications of the structuralist approach can be found in many areas of philosophy. I present a schema of the structuralist approach, which conceptually unifies such applications in different subject matters. It is argued that two classic arguments in the literature, Paul Benacerraf’s argument on natural numbers and W. V. O. Quine’s argument for the indeterminacy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The mathematical stance.Alan Baker - 2022 - Synthese 200 (1):1-18.
    Defenders of the enhanced indispensability argument argue that the most effective route to platonism is via the explanatory role of mathematical posits in science. Various compelling cases of mathematical explanation in science have been proposed, but a satisfactory general philosophical account of such explanations is lacking. In this paper, I lay out the framework for such an account based on the notion of “the mathematical stance.” This is developed by analogy with Dennett’s well-known concept of “the intentional stance.” Roughly, adopting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Parts of Structures.Matteo Plebani & Michele Lubrano - 2022 - Philosophia 50 (3):1277-1285.
    We contribute to the ongoing discussion on mathematical structuralism by focusing on a question that has so far been neglected: when is a structure part of another structure? This paper is a first step towards answering the question. We will show that a certain conception of structures, abstractionism about structures, yields a natural definition of the parthood relation between structures. This answer has many interesting consequences; however, it conflicts with some standard mereological principles. We argue that the tension between abstractionism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasons explanations (of actions) as structural explanations.Megan Fritts - 2021 - Synthese 199 (5-6):12683-12704.
    Non-causal accounts of action explanation have long been criticized for lacking a positive thesis, relying primarily on negative arguments to undercut the standard Causal Theory of Action The Stanford Encyclopedia of Philosophy, 2016). Additionally, it is commonly thought that non-causal accounts fail to provide an answer to Donald Davidson’s challenge for theories of reasons explanations of actions. According to Davidson’s challenge, a plausible non-causal account of reasons explanations must provide a way of connecting an agent’s reasons, not only to what (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Cost of Closure: Logical Realism, Anti-Exceptionalism, and Theoretical Equivalence.Michaela M. McSweeney - 2021 - Synthese 199:12795–12817.
    Philosophers of science often assume that logically equivalent theories are theoretically equivalent. I argue that two theses, anti-exceptionalism about logic (which says, roughly, that logic is not a priori, that it is revisable, and that it is not special or set apart from other human inquiry) and logical realism (which says, roughly, that differences in logic reflect genuine metaphysical differences in the world), make trouble for both this commitment and the closely related commitment to theories being closed under logical consequence. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, structures, and the explanatory role of mathematics in empirical science.Mary Leng - 2021 - Synthese 199 (3-4):10415-10440.
    Are there genuine mathematical explanations of physical phenomena, and if so, how can mathematical theories, which are typically thought to concern abstract mathematical objects, explain contingent empirical matters? The answer, I argue, is in seeing an important range of mathematical explanations as structural explanations, where structural explanations explain a phenomenon by showing it to have been an inevitable consequence of the structural features instantiated in the physical system under consideration. Such explanations are best cast as deductive arguments which, by virtue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Homotopy Type Theory and Structuralism.Teruji Thomas - 2014 - Dissertation, University of Oxford
    I explore the possibility of a structuralist interpretation of homotopy type theory (HoTT) as a foundation for mathematics. There are two main aspects to HoTT's structuralist credentials. First, it builds on categorical set theory (CST), of which the best-known variant is Lawvere's ETCS. I argue that CST has merit as a structuralist foundation, in that it ascribes only structural properties to typical mathematical objects. However, I also argue that this success depends on the adoption of a strict typing system which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal and Hyperintensional Cognitivism and Modal and Hyperintensional Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal and hyperintensional cognitivism and modal and hyperintensional expressivism. I argue that epistemic modal algebras, endowed with a hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics, comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are categorically dual. I examine five methods for modeling the dynamics of conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Dispositionalism Entail Panpsychism?Hedda Hassel Mørch - 2018 - Topoi 39 (5):1073-1088.
    According to recent arguments for panpsychism, all physical properties are dispositional, dispositions require categorical grounds, and the only categorical properties we know are phenomenal properties. Therefore, phenomenal properties can be posited as the categorical grounds of all physical properties—in order to solve the mind–body problem and/or in order avoid noumenalism about the grounds of the physical world. One challenge to this case comes from dispositionalism, which agrees that all physical properties are dispositional, but denies that dispositions require categorical grounds. In (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Structuralism and Mathematical Practice in Felix Klein’s Work on Non-Euclidean Geometry†.Biagioli Francesca - 2020 - Philosophia Mathematica 28 (3):360-384.
    It is well known that Felix Klein took a decisive step in investigating the invariants of transformation groups. However, less attention has been given to Klein’s considerations on the epistemological implications of his work on geometry. This paper proposes an interpretation of Klein’s view as a form of mathematical structuralism, according to which the study of mathematical structures provides the basis for a better understanding of how mathematical research and practice develop.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identifying finite cardinal abstracts.Sean C. Ebels-Duggan - 2020 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap. Abstractionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part B†.Hannes Leitgeb - 2021 - Philosophia Mathematica 29 (1):64-87.
    This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Structuralist Thesis Reconsidered.Georg Schiemer & John Wigglesworth - 2019 - British Journal for the Philosophy of Science 70 (4):1201-1226.
    Øystein Linnebo and Richard Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They argue that their theory of abstract structures proves a consistent version of the structuralist thesis that positions in abstract structures only have structural properties. They do this by defining a subset of the properties of positions in structures, so-called fundamental properties, and argue that all fundamental properties of positions are structural. In this article, we argue that the structuralist thesis, even (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • In Defense of Benacerraf’s Multiple-Reductions Argument.Michele Ginammi - 2019 - Philosophia Mathematica 27 (2):276-288.
    I discuss Steinhart’s argument against Benacerraf’s famous multiple-reductions argument to the effect that numbers cannot be sets. Steinhart offers a mathematical argument according to which there is only one series of sets to which the natural numbers can be reduced, and thus attacks Benacerraf’s assumption that there are multiple reductions of numbers to sets. I will argue that Steinhart’s argument is problematic and should not be accepted.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Metaphysical Contingentism.Kristie Miller - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. New York, NY: Routledge. pp. 405-420.
    Let us distinguish two kinds of contingentism: entity contingentism and metaphysical contingentism. Here, I use ‘entity’ very broadly to include anything over which we can quantify—objects (abstract and concrete), properties, and relations. Then entity contingentism about some entity, E, is the view that E exists contingently: that is, that E exists in some possible worlds and not in others. By contrast, entity necessitarianism about E is the view that E exists of necessity: that is, that E exists in all possible (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Nature of Appearance in Kant’s Transcendentalism: A Seman- tico-Cognitive Analysis.Sergey L. Katrechko - 2018 - Kantian Journal 37 (3):41-55.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Realizing race.Aaron M. Griffith - 2020 - Philosophical Studies 177 (7):1919-1934.
    A prominent way of explaining how race is socially constructed appeals to social positions and social structures. On this view, the construction of a person’s race is understood in terms of the person occupying a certain social position in a social structure. The aim of this paper is to give a metaphysically perspicuous account of this form of race construction. Analogous to functionalism about mental states, I develop an account of a ‘race structure’ in which various races (Black, White, Asian, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Non-eliminative Structuralism, Fregean Abstraction, and Non-rigid Structures.John Wigglesworth - 2018 - Erkenntnis 86 (1):113-127.
    Linnebo and Pettigrew have recently developed a version of non-eliminative mathematical structuralism based on Fregean abstraction principles. They recognize that this version of structuralism is vulnerable to the well-known problem of non-rigid structures. This paper offers a solution to the problem for this version of structuralism. The solution involves expanding the languages used to describe mathematical structures. We then argue that this solution is philosophically acceptable to those who endorse mathematical structuralism based on Fregean abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the explanatory power of truth in logic.Gila Sher - 2018 - Philosophical Issues 28 (1):348-373.
    Philosophers are divided on whether the proof- or truth-theoretic approach to logic is more fruitful. The paper demonstrates the considerable explanatory power of a truth-based approach to logic by showing that and how it can provide (i) an explanatory characterization —both semantic and proof-theoretical—of logical inference, (ii) an explanatory criterion for logical constants and operators, (iii) an explanatory account of logic’s role (function) in knowledge, as well as explanations of (iv) the characteristic features of logic —formality, strong modal force, generality, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absence perception and the philosophy of zero.Neil Barton - 2020 - Synthese 197 (9):3823-3850.
    Zero provides a challenge for philosophers of mathematics with realist inclinations. On the one hand it is a bona fide cardinal number, yet on the other it is linked to ideas of nothingness and non-being. This paper provides an analysis of the epistemology and metaphysics of zero. We develop several constraints and then argue that a satisfactory account of zero can be obtained by integrating an account of numbers as properties of collections, work on the philosophy of absences, and recent (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Knowledge and Naturalism.Fabio Sterpetti - 2019 - Philosophia 47 (1):225-247.
    How should one conceive of the method of mathematics, if one takes a naturalist stance? Mathematical knowledge is regarded as the paradigm of certain knowledge, since mathematics is based on the axiomatic method. Natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some naturalists try to naturalize mathematics relying on Darwinism. But several difficulties arise when one tries to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, models, models: a deflationary view.Jay Odenbaugh - 2018 - Synthese 198 (Suppl 21):1-16.
    In this essay, I first consider a popular view of models and modeling, the similarity view. Second, I contend that arguments for it fail and it suffers from what I call “Hughes’ worry.” Third, I offer a deflationary approach to models and modeling that avoids Hughes’ worry and shows how scientific representations are of apiece with other types of representations. Finally, I consider an objection that the similarity view can deal with approximations better than the deflationary view and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (Probably) Not companions in guilt.Sharon Berry - 2018 - Philosophical Studies 175 (9):2285-2308.
    In this paper, I will attempt to develop and defend a common form of intuitive resistance to the companions in guilt argument. I will argue that one can reasonably believe there are promising solutions to the access problem for mathematical realism that don’t translate to moral realism. In particular, I will suggest that the structuralist project of accounting for mathematical knowledge in terms of some form of logical knowledge offers significant hope of success while no analogous approach offers such hope (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grounding-mechanical explanation.Kelly Trogdon - 2018 - Philosophical Studies 175 (6):1289-1309.
    Characterization of a form of explanation involving grounding on the model of mechanistic causal explanation.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Towards a Theory of Universes: Structure Theory and the Mathematical Universe Hypothesis.Colin Hamlin - 2017 - Synthese 194 (2):571–591.
    The maturation of the physical image has made apparent the limits of our scientific understanding of fundamental reality. These limitations serve as motivation for a new form of metaphysical inquiry that restricts itself to broadly scientific methods. Contributing towards this goal we combine the mathematical universe hypothesis as developed by Max Tegmark with the axioms of Stewart Shapiro’s structure theory. The result is a theory we call the Theory of the Structural Multiverse (TSM). The focus is on informal theory development (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structuralism, Invariance, and Univalence.Steve Awodey - 2014 - Philosophia Mathematica 22 (1):1-11.
    The recent discovery of an interpretation of constructive type theory into abstract homotopy theory suggests a new approach to the foundations of mathematics with intrinsic geometric content and a computational implementation. Voevodsky has proposed such a program, including a new axiom with both geometric and logical significance: the Univalence Axiom. It captures the familiar aspect of informal mathematical practice according to which one can identify isomorphic objects. While it is incompatible with conventional foundations, it is a powerful addition to homotopy (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Criteria of identity and the hermeneutic goal of ante rem structuralism.Scott Normand - 2018 - Synthese 195 (5):2141-2153.
    The ante rem structuralist holds that places in ante rem structures are objects with determinate identity conditions, but he cannot justify this view by providing places with criteria of identity. The latest response to this problem holds that no criteria of identity are required because mathematical practice presupposes a primitive identity relation. This paper criticizes this appeal to mathematical practice. Ante rem structuralism interprets mathematics within the theory of universals, holding that mathematical objects are places in universals. The identity problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Husserl on completeness, definitely.Mirja Hartimo - 2018 - Synthese 195 (4):1509-1527.
    The paper discusses Husserl’s notion of definiteness as presented in his Göttingen Mathematical Society Double Lecture of 1901 as a defense of two, in many cases incompatible, ideals, namely full characterizability of the domain, i.e., categoricity, and its syntactic completeness. These two ideals are manifest already in Husserl’s discussion of pure logic in the Prolegomena: The full characterizability is related to Husserl’s attempt to capture the interconnection of things, whereas syntactic completeness relates to the interconnection of truths. In the Prolegomena (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Scientific representation.Roman Frigg & James Nguyen - 2016 - Stanford Encyclopedia of Philosophy.
    Science provides us with representations of atoms, elementary particles, polymers, populations, genetic trees, economies, rational decisions, aeroplanes, earthquakes, forest fires, irrigation systems, and the world’s climate. It's through these representations that we learn about the world. This entry explores various different accounts of scientific representation, with a particular focus on how scientific models represent their target systems. As philosophers of science are increasingly acknowledging the importance, if not the primacy, of scientific models as representational units of science, it's important to (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Mohan Ganesalingam. The Language of Mathematics: A Linguistic and Philosophical Investigation. FoLLI Publications on Logic, Language and Information. [REVIEW]Andrew Aberdein - 2017 - Philosophia Mathematica 25 (1):143–147.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fundamentality, Effectiveness, and Objectivity of Gauge Symmetries.Aldo Filomeno - 2016 - International Studies in the Philosophy of Science 30 (1):19-37.
    Much recent philosophy of physics has investigated the process of symmetry breaking. Here, I critically assess the alleged symmetry restoration at the fundamental scale. I draw attention to the contingency that gauge symmetries exhibit, that is, the fact that they have been chosen from an infinite space of possibilities. I appeal to this feature of group theory to argue that any metaphysical account of fundamental laws that expects symmetry restoration up to the fundamental level is not fully satisfactory. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Models and fiction.Roman Frigg - 2007 - Synthese 172 (2):251-268.
    Most scientific models are not physical objects, and this raises important questions. What sort of entity are models, what is truth in a model, and how do we learn about models? In this paper I argue that models share important aspects in common with literary fiction, and that therefore theories of fiction can be brought to bear on these questions. In particular, I argue that the pretence theory as developed by Walton (1990, Mimesis as make-believe: on the foundations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Ante Rem Structuralism and the No-Naming Constraint.Teresa Kouri - 2016 - Philosophia Mathematica 24 (1):117-128.
    Tim Räz has presented what he takes to be a new objection to Stewart Shapiro's ante rem structuralism. Räz claims that ARS conflicts with mathematical practice. I will explain why this is similar to an old problem, posed originally by John Burgess in 1999 and Jukka Keränen in 2001, and show that Shapiro can use the solution to the original problem in Räz's case. Additionally, I will suggest that Räz's proposed treatment of the situation does not provide an argument for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Oxford Handbook of Philosophical Methodology.Herman Cappelen, Tamar Gendler & John Hawthorne (eds.) - 2016 - Oxford, United Kingdom: Oxford University Press.
    This is the most comprehensive book ever published on philosophical methodology. A team of thirty-eight of the world's leading philosophers present original essays on various aspects of how philosophy should be and is done. The first part is devoted to broad traditions and approaches to philosophical methodology. The entries in the second part address topics in philosophical methodology, such as intuitions, conceptual analysis, and transcendental arguments. The third part of the book is devoted to essays about the interconnections between philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Scientific Pluralism.Stephen H. Kellert, Helen E. Longino & C. Kenneth Waters (eds.) - 1956 - Univ of Minnesota Press.
    Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science?
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • What is a (social) structural explanation?Sally Haslanger - 2016 - Philosophical Studies 173 (1):113-130.
    A philosophically useful account of social structure must accommodate the fact that social structures play an important role in structural explanation. But what is a structural explanation? How do structural explanations function in the social sciences? This paper offers a way of thinking about structural explanation and sketches an account of social structure that connects social structures with structural explanation.
    Download  
     
    Export citation  
     
    Bookmark   155 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations