Switch to: Citations

References in:

On computational explanations

Synthese 193 (12):3931-3949 (2016)

Add references

You must login to add references.
  1. Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   214 citations  
  • (1 other version)The Nature of Psychological Explanation.Robert Van Gulick - 1986 - Philosophy of Science 53 (4):616-618.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Brains as analog-model computers.Oron Shagrir - 2010 - Studies in History and Philosophy of Science Part A 41 (3):271-279.
    Computational neuroscientists not only employ computer models and simulations in studying brain functions. They also view the modeled nervous system itself as computing. What does it mean to say that the brain computes? And what is the utility of the ‘brain-as-computer’ assumption in studying brain functions? In previous work, I have argued that a structural conception of computation is not adequate to address these questions. Here I outline an alternative conception of computation, which I call the analog-model. The term ‘analog-model’ (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The adaptive nature of human categorization.John R. Anderson - 1991 - Psychological Review 98 (3):409-429.
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • From Universal Laws of Cognition to Specific Cognitive Models.Nick Chater & Gordon D. A. Brown - 2008 - Cognitive Science 32 (1):36-67.
    The remarkable successes of the physical sciences have been built on highly general quantitative laws, which serve as the basis for understanding an enormous variety of specific physical systems. How far is it possible to construct universal principles in the cognitive sciences, in terms of which specific aspects of perception, memory, or decision making might be modelled? Following Shepard (e.g.,1987), it is argued that some universal principles may be attainable in cognitive science. Here, 2 examples are proposed: the simplicity principle (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   417 citations  
  • Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience.William Bechtel - 2007 - Psychology Press.
    A variety of scientific disciplines have set as their task explaining mental activities, recognizing that in some way these activities depend upon our brain. But, until recently, the opportunities to conduct experiments directly on our brains were limited. As a result, research efforts were split between disciplines such as cognitive psychology, linguistics, and artificial intelligence that investigated behavior, while disciplines such as neuroanatomy, neurophysiology, and genetics experimented on the brains of non-human animals. In recent decades these disciplines integrated, and with (...)
    Download  
     
    Export citation  
     
    Bookmark   248 citations  
  • Marr's Levels Revisited: Understanding How Brains Break.Valerie G. Hardcastle & Kiah Hardcastle - 2015 - Topics in Cognitive Science 7 (2):259-273.
    While the research programs in early cognitive science and artificial intelligence aimed to articulate what cognition was in ideal terms, much research in contemporary computational neuroscience looks at how and why brains fail to function as they should ideally. This focus on impairment affects how we understand David Marr's hypothesized three levels of understanding. In this essay, we suggest some refinements to Marr's distinctions using a population activity model of cortico-striatal circuitry exploring impulsivity and behavioral inhibition as a case study. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Marr's Attacks: On Reductionism and Vagueness.Chris Eliasmith & Carter Kolbeck - 2015 - Topics in Cognitive Science 7 (2):323-335.
    It has been suggested that Marr took the three levels he famously identifies to be independent. In this paper, we argue that Marr's view is more nuanced. Specifically, we show that the view explicitly articulated in his work attempts to integrate the levels, and in doing so results in Marr attacking both reductionism and vagueness. The result is a perspective in which both high-level information-processing constraints and low-level implementational constraints play mutually reinforcing and constraining roles. We discuss our recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is human cognition adaptive?John R. Anderson - 1991 - Behavioral and Brain Sciences 14 (3):471-485.
    Can the output of human cognition be predicted from the assumption that it is an optimal response to the information-processing demands of the environment? A methodology called rational analysis is described for deriving predictions about cognitive phenomena using optimization assumptions. The predictions flow from the statistical structure of the environment and not the assumed structure of the mind. Bayesian inference is used, assuming that people start with a weak prior model of the world which they integrate with experience to develop (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • (1 other version)1. Marr on Computational-Level Theories Marr on Computational-Level Theories (pp. 477-500).Oron Shagrir, John D. Norton, Holger Andreas, Jouni-Matti Kuukkanen, Aris Spanos, Eckhart Arnold, Elliott Sober, Peter Gildenhuys & Adela Helena Roszkowski - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why. This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: that the Why element plays an explanatory role in computational-level theories, that its goal is to explain why the computed function is appropriate for a given visual task, and that the explanation consists in showing that the functional relations between the representing cells are similar to (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Causal and Constitutive Explanation Compared.Petri Ylikoski - 2013 - Erkenntnis 78 (2):277-297.
    This article compares causal and constitutive explanation. While scientific inquiry usually addresses both causal and constitutive questions, making the distinction is crucial for a detailed understanding of scientific questions and their interrelations. These explanations have different kinds of explananda and they track different sorts of dependencies. Constitutive explanations do not address events or behaviors, but causal capacities. While there are some interesting relations between building and causal manipulation, causation and constitution are not to be confused. Constitution is a synchronous and (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Explanation and description in computational neuroscience.David Michael Kaplan - 2011 - Synthese 183 (3):339-373.
    The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It (...)
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Integrating psychology and neuroscience: functional analyses as mechanism sketches.Gualtiero Piccinini & Carl Craver - 2011 - Synthese 183 (3):283-311.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...)
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • (1 other version)Marr on computational-level theories.Oron Shagrir - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why . This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: ( a ) that the Why element plays an explanatory role in computational-level theories, ( b ) that its goal is to explain why the computed function (specified by the What element) is appropriate for a given visual task, and ( c ) that the (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Vision.David Marr - 1982 - W. H. Freeman.
    Download  
     
    Export citation  
     
    Bookmark   1895 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1659 citations  
  • (1 other version)Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   400 citations  
  • Dissecting explanatory power.Petri Ylikoski & Jaakko Kuorikoski - 2010 - Philosophical Studies 148 (2):201–219.
    Comparisons of rival explanations or theories often involve vague appeals to explanatory power. In this paper, we dissect this metaphor by distinguishing between different dimensions of the goodness of an explanation: non-sensitivity, cognitive salience, precision, factual accuracy and degree of integration. These dimensions are partially independent and often come into conflict. Our main contribution is to go beyond simple stipulation or description by explicating why these factors are taken to be explanatory virtues. We accomplish this by using the contrastive-counterfactual approach (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Role functions, mechanisms, and hierarchy.Carl F. Craver - 2001 - Philosophy of Science 68 (1):53-74.
    Many areas of science develop by discovering mechanisms and role functions. Cummins' (1975) analysis of role functions-according to which an item's role function is a capacity of that item that appears in an analytic explanation of the capacity of some containing system-captures one important sense of "function" in the biological sciences and elsewhere. Here I synthesize Cummins' account with recent work on mechanisms and causal/mechanical explanation. The synthesis produces an analysis of specifically mechanistic role functions, one that uses the characteristic (...)
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • Saving the phenomena.James Bogen & James Woodward - 1988 - Philosophical Review 97 (3):303-352.
    Download  
     
    Export citation  
     
    Bookmark   387 citations  
  • The Nature of Psychological Explanation.Robert Cummins - 1983 - MIT Press.
    In exploring the nature of psychological explanation, this book looks at how psychologists theorize about the human ability to calculate, to speak a language and the like. It shows how good theorizing explains or tries to explain such abilities as perception and cognition. It recasts the familiar explanations of "intelligence" and "cognitive capacity" as put forward by philosophers such as Fodor, Dennett, and others in terms of a theory of explanation that makes established doctrine more intelligible to professionals and their (...)
    Download  
     
    Export citation  
     
    Bookmark   342 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1346 citations  
  • Computational explanation in neuroscience.Gualtiero Piccinini - 2006 - Synthese 153 (3):343-353.
    According to some philosophers, computational explanation is proprietary
    to psychology—it does not belong in neuroscience. But neuroscientists routinely offer computational explanations of cognitive phenomena. In fact, computational explanation was initially imported from computability theory into the science of mind by neuroscientists, who justified this move on neurophysiological grounds. Establishing the legitimacy and importance of computational explanation in neuroscience is one thing; shedding light on it is another. I raise some philosophical questions pertaining to computational explanation and outline some promising answers that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • When mechanistic models explain.Carl F. Craver - 2006 - Synthese 153 (3):355-376.
    Not all models are explanatory. Some models are data summaries. Some models sketch explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to conjecture a how-possibly explanation without regard to whether it is a how-actually explanation. I use the Hodgkin and Huxley model of the action potential to illustrate these ways that models can be useful without explaining. I then use the subsequent development of the explanation of the action potential to show what is (...)
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (1 other version)Functionalism, computationalism, and mental contents.Gualtiero Piccinini - 2004 - Canadian Journal of Philosophy 34 (3):375-410.
    Some philosophers have conflated functionalism and computationalism. I reconstruct how this came about and uncover two assumptions that made the conflation possible. They are the assumptions that (i) psychological functional analyses are computational descriptions and (ii) everything may be described as performing computations. I argue that, if we want to improve our understanding of both the metaphysics of mental states and the functional relations between them, we should reject these assumptions. # 2004 Elsevier Ltd. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Color realism and color science.Alex Byrne & David R. Hilbert - 2003 - Behavioral and Brain Sciences 26 (1):3-21.
    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in (...)
    Download  
     
    Export citation  
     
    Bookmark   291 citations  
  • A clearer vision.Lawrence A. Shapiro - 1997 - Philosophy of Science 64 (1):131-53.
    Frances Egan argues that the states of computational theories of vision are individuated individualistically and, as far as the theory is concerned, are not intentional. Her argument depends on equating the goals and explanatory strategies of computational psychology with those of its algorithmic level. However, closer inspection of computational psychology reveals that the computational level plays an essential role in explaining visual processes and that explanations at this level are nonindividualistic and intentional. In conclusion, I sketch an account of content (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Content, computation and externalism.Oron Shagrir - 2001 - Mind 110 (438):369-400.
    The paper presents an extended argument for the claim that mental content impacts the computational individuation of a cognitive system (section 2). The argument starts with the observation that a cognitive system may simultaneously implement a variety of different syntactic structures, but that the computational identity of a cognitive system is given by only one of these implemented syntactic structures. It is then asked what are the features that determine which of implemented syntactic structures is the computational structure of the (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Reconciling simplicity and likelihood principles in perceptual organization.Nick Chater - 1996 - Psychological Review 103 (3):566-581.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Non-­‐Redundant Contributions of Marr’s Three Levels of Analysis for Explaining Information Processing Mechanisms.William Bechtel & Oron Shagrir - 2015 - Topics in Cognitive Science 7 (2):312-322.
    Are all three of Marr's levels needed? Should they be kept distinct? We argue for the distinct contributions and methodologies of each level of analysis. It is important to maintain them because they provide three different perspectives required to understand mechanisms, especially information-processing mechanisms. The computational perspective provides an understanding of how a mechanism functions in broader environments that determines the computations it needs to perform. The representation and algorithmic perspective offers an understanding of how information about the environment is (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Algorithmic Level Is the Bridge Between Computation and Brain.Bradley C. Love - 2015 - Topics in Cognitive Science 7 (2):230-242.
    Every scientist chooses a preferred level of analysis and this choice shapes the research program, even determining what counts as evidence. This contribution revisits Marr's three levels of analysis and evaluates the prospect of making progress at each individual level. After reviewing limitations of theorizing within a level, two strategies for integration across levels are considered. One is top–down in that it attempts to build a bridge from the computational to algorithmic level. Limitations of this approach include insufficient theoretical constraint (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Rational and mechanistic perspectives on reinforcement learning.Nick Chater - 2009 - Cognition 113 (3):350-364.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Explaining the Computational Mind.Marcin Miłkowski - 2013 - MIT Press.
    In the book, I argue that the mind can be explained computationally because it is itself computational—whether it engages in mental arithmetic, parses natural language, or processes the auditory signals that allow us to experience music. All these capacities arise from complex information-processing operations of the mind. By analyzing the state of the art in cognitive science, I develop an account of computational explanation used to explain the capacities in question.
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • (1 other version)Probabilistic models of cognition: Conceptual foundations.Nick Chater & Alan Yuille - 2006 - Trends in Cognitive Sciences 10 (7):287-291.
    Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, ‘sophisticated’ probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Computation and content.Frances Egan - 1995 - Philosophical Review 104 (2):181-203.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Marr’s Computational Level and Delineating Phenomena.Oron Shagrir & William Bechtel - unknown
    A key component of scientific inquiry, especially inquiry devoted to developing mechanistic explanations, is delineating the phenomenon to be explained. The task of delineating phenomena, however, has not been sufficiently analyzed, even by the new mechanistic philosophers of science. We contend that Marr’s characterization of what he called the computational level provides a valuable resource for understanding what is involved in delineating phenomena. Unfortunately, the distinctive feature of Marr’s computational level, his dual emphasis on both what is computed and why (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Computational explanation and mechanistic explanation of mind.Gualtiero Piccinini - 2007 - In Francesco Ferretti, Massimo Marraffa & Mario De Caro (eds.), Cartographies of the Mind: The Interface between Philosophy and Cognitive Science. Springer. pp. 343-353.
    According to the computational theory of mind (CTM), mental capacities are explained by inner computations, which in biological organisms are realized in the brain. Computational explanation is so popular and entrenched that it’s common for scientists and philosophers to assume CTM without argument.
    Download  
     
    Export citation  
     
    Bookmark   29 citations