Switch to: Citations

Add references

You must login to add references.
  1. Dermatologist-level classification of skin cancer with deep neural networks.Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun - 2017 - Nature 542 (7639):115-118.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Identifying Ethical Considerations for Machine Learning Healthcare Applications.Danton S. Char, Michael D. Abràmoff & Chris Feudtner - 2020 - American Journal of Bioethics 20 (11):7-17.
    Along with potential benefits to healthcare delivery, machine learning healthcare applications raise a number of ethical concerns. Ethical evaluations of ML-HCAs will need to structure th...
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The Ethics of AI Ethics: An Evaluation of Guidelines.Thilo Hagendorff - 2020 - Minds and Machines 30 (1):99-120.
    Current advances in research, development and application of artificial intelligence systems have yielded a far-reaching discourse on AI ethics. In consequence, a number of ethics guidelines have been released in recent years. These guidelines comprise normative principles and recommendations aimed to harness the “disruptive” potentials of new AI technologies. Designed as a semi-systematic evaluation, this paper analyzes and compares 22 guidelines, highlighting overlaps but also omissions. As a result, I give a detailed overview of the field of AI ethics. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Should we be afraid of medical AI?Ezio Di Nucci - 2019 - Journal of Medical Ethics 45 (8):556-558.
    I analyse an argument according to which medical artificial intelligence represents a threat to patient autonomy—recently put forward by Rosalind McDougall in the Journal of Medical Ethics. The argument takes the case of IBM Watson for Oncology to argue that such technologies risk disregarding the individual values and wishes of patients. I find three problems with this argument: it confuses AI with machine learning; it misses machine learning’s potential for personalised medicine through big data; it fails to distinguish between evidence-based (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The ethics of algorithms: mapping the debate.Brent Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter & Luciano Floridi - 2016 - Big Data and Society 3 (2):2053951716679679.
    In information societies, operations, decisions and choices previously left to humans are increasingly delegated to algorithms, which may advise, if not decide, about how data should be interpreted and what actions should be taken as a result. More and more often, algorithms mediate social processes, business transactions, governmental decisions, and how we perceive, understand, and interact among ourselves and with the environment. Gaps between the design and operation of algorithms and our understanding of their ethical implications can have severe consequences (...)
    Download  
     
    Export citation  
     
    Bookmark   218 citations  
  • The Right to Know and the Right Not to Know: Genetic Privacy and Responsibility.Ruth Chadwick, Mairi Levitt & Darren Shickle (eds.) - 2014 - Cambridge University Press.
    The privacy concerns discussed in the 1990s in relation to the New Genetics failed to anticipate the relevant issues for individuals, families, geneticists and society. Consumers, for example, can now buy their personal genetic information and share it online. The challenges facing genetic privacy have evolved as new biotechnologies have developed, and personal privacy is increasingly challenged by the irrepressible flow of electronic data between the personal and public spheres and by surveillance for terrorism and security risks. This book considers (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Artificial Intelligence, Social Media and Depression. A New Concept of Health-Related Digital Autonomy.Sebastian Laacke, Regina Mueller, Georg Schomerus & Sabine Salloch - 2021 - American Journal of Bioethics 21 (7):4-20.
    The development of artificial intelligence (AI) in medicine raises fundamental ethical issues. As one example, AI systems in the field of mental health successfully detect signs of mental disorders, such as depression, by using data from social media. These AI depression detectors (AIDDs) identify users who are at risk of depression prior to any contact with the healthcare system. The article focuses on the ethical implications of AIDDs regarding affected users’ health-related autonomy. Firstly, it presents the (ethical) discussion of AI (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The right to refuse diagnostics and treatment planning by artificial intelligence.Thomas Ploug & Søren Holm - 2020 - Medicine, Health Care and Philosophy 23 (1):107-114.
    In an analysis of artificially intelligent systems for medical diagnostics and treatment planning we argue that patients should be able to exercise a right to withdraw from AI diagnostics and treatment planning for reasons related to (1) the physician’s role in the patients’ formation of and acting on personal preferences and values, (2) the bias and opacity problem of AI systems, and (3) rational concerns about the future societal effects of introducing AI systems in the health care sector.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Computer knows best? The need for value-flexibility in medical AI.Rosalind J. McDougall - 2019 - Journal of Medical Ethics 45 (3):156-160.
    Artificial intelligence (AI) is increasingly being developed for use in medicine, including for diagnosis and in treatment decision making. The use of AI in medical treatment raises many ethical issues that are yet to be explored in depth by bioethicists. In this paper, I focus specifically on the relationship between the ethical ideal of shared decision making and AI systems that generate treatment recommendations, using the example of IBM’s Watson for Oncology. I argue that use of this type of system (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • AI armageddon and the three laws of robotics.Lee McCauley - 2007 - Ethics and Information Technology 9 (2):153-164.
    After 50 years, the fields of artificial intelligence and robotics capture the imagination of the general public while, at the same time, engendering a great deal of fear and skepticism. Isaac Asimov recognized this deep-seated misconception of technology and created the Three Laws of Robotics. The first part of this paper examines the underlying fear of intelligent robots, revisits Asimov’s response, and reports on some current opinions on the use of the Three Laws by practitioners. Finally, an argument against robotic (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Primer on an ethics of AI-based decision support systems in the clinic.Matthias Braun, Patrik Hummel, Susanne Beck & Peter Dabrock - 2021 - Journal of Medical Ethics 47 (12):3-3.
    Making good decisions in extremely complex and difficult processes and situations has always been both a key task as well as a challenge in the clinic and has led to a large amount of clinical, legal and ethical routines, protocols and reflections in order to guarantee fair, participatory and up-to-date pathways for clinical decision-making. Nevertheless, the complexity of processes and physical phenomena, time as well as economic constraints and not least further endeavours as well as achievements in medicine and healthcare (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On the ethics of algorithmic decision-making in healthcare.Thomas Grote & Philipp Berens - 2020 - Journal of Medical Ethics 46 (3):205-211.
    In recent years, a plethora of high-profile scientific publications has been reporting about machine learning algorithms outperforming clinicians in medical diagnosis or treatment recommendations. This has spiked interest in deploying relevant algorithms with the aim of enhancing decision-making in healthcare. In this paper, we argue that instead of straightforwardly enhancing the decision-making capabilities of clinicians and healthcare institutions, deploying machines learning algorithms entails trade-offs at the epistemic and the normative level. Whereas involving machine learning might improve the accuracy of medical (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Health-Related Digital Autonomy. A Response to the Commentaries.Sebastian Laacke, Regina Mueller, Georg Schomerus & Sabine Salloch - 2021 - American Journal of Bioethics 21 (10):W1-W5.
    The COVID-19 pandemic has been a threat to both physical and mental health. The spreading disease and its impacts, the containment measures and the way all of our lives have dramatically changed ha...
    Download  
     
    Export citation  
     
    Bookmark   1 citation