Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Justifying Our Credences in the Trustworthiness of AI Systems: A Reliabilistic Approach.Andrea Ferrario - 2024 - Science and Engineering Ethics 30 (6):1-21.
    We address an open problem in the philosophy of artificial intelligence (AI): how to justify the epistemic attitudes we have towards the trustworthiness of AI systems. The problem is important, as providing reasons to believe that AI systems are worthy of trust is key to appropriately rely on these systems in human-AI interactions. In our approach, we consider the trustworthiness of an AI as a time-relative, composite property of the system with two distinct facets. One is the actual trustworthiness of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithms and dehumanization: a definition and avoidance model.Mario D. Schultz, Melanie Clegg, Reto Hofstetter & Peter Seele - forthcoming - AI and Society:1-21.
    Dehumanization by algorithms raises important issues for business and society. Yet, these issues remain poorly understood due to the fragmented nature of the evolving dehumanization literature across disciplines, originating from colonialism, industrialization, post-colonialism studies, contemporary ethics, and technology studies. This article systematically reviews the literature on algorithms and dehumanization (n = 180 articles) and maps existing knowledge across several clusters that reveal its underlying characteristics. Based on the review, we find that algorithmic dehumanization is particularly problematic for human resource management (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-empirical methods for ethics research on digital technologies in medicine, health care and public health: a systematic journal review.Frank Ursin, Regina Müller, Florian Funer, Wenke Liedtke, David Renz, Svenja Wiertz & Robert Ranisch - 2024 - Medicine, Health Care and Philosophy 27 (4):513-528.
    Bioethics has developed approaches to address ethical issues in health care, similar to how technology ethics provides guidelines for ethical research on artificial intelligence, big data, and robotic applications. As these digital technologies are increasingly used in medicine, health care and public health, thus, it is plausible that the approaches of technology ethics have influenced bioethical research. Similar to the “empirical turn” in bioethics, which led to intense debates about appropriate moral theories, ethical frameworks and meta-ethics due to the increased (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are clinicians ethically obligated to disclose their use of medical machine learning systems to patients?Joshua Hatherley - forthcoming - Journal of Medical Ethics.
    It is commonly accepted that clinicians are ethically obligated to disclose their use of medical machine learning systems to patients, and that failure to do so would amount to a moral fault for which clinicians ought to be held accountable. Call this ‘the disclosure thesis.’ Four main arguments have been, or could be, given to support the disclosure thesis in the ethics literature: the risk-based argument, the rights-based argument, the materiality argument and the autonomy argument. In this article, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Owning Decisions: AI Decision-Support and the Attributability-Gap.Jannik Zeiser - 2024 - Science and Engineering Ethics 30 (4):1-19.
    Artificial intelligence (AI) has long been recognised as a challenge to responsibility. Much of this discourse has been framed around robots, such as autonomous weapons or self-driving cars, where we arguably lack control over a machine’s behaviour and therefore struggle to identify an agent that can be held accountable. However, most of today’s AI is based on machine-learning technology that does not act on its own, but rather serves as a decision-support tool, automatically analysing data to help human agents make (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Humans Doing in the Loop? Co-Reasoning and Practical Judgment When Using Machine Learning-Driven Decision Aids.Sabine Salloch & Andreas Eriksen - 2024 - American Journal of Bioethics 24 (9):67-78.
    Within the ethical debate on Machine Learning-driven decision support systems (ML_CDSS), notions such as “human in the loop” or “meaningful human control” are often cited as being necessary for ethical legitimacy. In addition, ethical principles usually serve as the major point of reference in ethical guidance documents, stating that conflicts between principles need to be weighed and balanced against each other. Starting from a neo-Kantian viewpoint inspired by Onora O'Neill, this article makes a concrete suggestion of how to interpret the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Should the use of adaptive machine learning systems in medicine be classified as research?Robert Sparrow, Joshua Hatherley, Justin Oakley & Chris Bain - 2024 - American Journal of Bioethics 24 (10):58-69.
    A novel advantage of the use of machine learning (ML) systems in medicine is their potential to continue learning from new data after implementation in clinical practice. To date, considerations of the ethical questions raised by the design and use of adaptive machine learning systems in medicine have, for the most part, been confined to discussion of the so-called “update problem,” which concerns how regulators should approach systems whose performance and parameters continue to change even after they have received regulatory (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Percentages and reasons: AI explainability and ultimate human responsibility within the medical field.Eva Winkler, Andreas Wabro & Markus Herrmann - 2024 - Ethics and Information Technology 26 (2):1-10.
    With regard to current debates on the ethical implementation of AI, especially two demands are linked: the call for explainability and for ultimate human responsibility. In the medical field, both are condensed into the role of one person: It is the physician to whom AI output should be explainable and who should thus bear ultimate responsibility for diagnostic or treatment decisions that are based on such AI output. In this article, we argue that a black box AI indeed creates a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Machine learning in healthcare and the methodological priority of epistemology over ethics.Thomas Grote - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    This paper develops an account of how the implementation of ML models into healthcare settings requires revising the methodological apparatus of philosophical bioethics. On this account, ML models are cognitive interventions that provide decision-support to physicians and patients. Due to reliability issues, opaque reasoning processes, and information asymmetries, ML models pose inferential problems for them. These inferential problems lay the grounds for many ethical problems that currently claim centre-stage in the bioethical debate. Accordingly, this paper argues that the best way (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Black-box assisted medical decisions: AI power vs. ethical physician care.Berman Chan - 2023 - Medicine, Health Care and Philosophy 26 (3):285-292.
    Without doctors being able to explain medical decisions to patients, I argue their use of black box AIs would erode the effective and respectful care they provide patients. In addition, I argue that physicians should use AI black boxes only for patients in dire straits, or when physicians use AI as a “co-pilot” (analogous to a spellchecker) but can independently confirm its accuracy. I respond to A.J. London’s objection that physicians already prescribe some drugs without knowing why they work.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Is AI the Future of Mental Healthcare?Francesca Minerva & Alberto Giubilini - 2023 - Topoi 42 (3):809-817.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Responsibility and decision-making authority in using clinical decision support systems: an empirical-ethical exploration of German prospective professionals’ preferences and concerns.Florian Funer, Wenke Liedtke, Sara Tinnemeyer, Andrea Diana Klausen, Diana Schneider, Helena U. Zacharias, Martin Langanke & Sabine Salloch - 2024 - Journal of Medical Ethics 50 (1):6-11.
    Machine learning-driven clinical decision support systems (ML-CDSSs) seem impressively promising for future routine and emergency care. However, reflection on their clinical implementation reveals a wide array of ethical challenges. The preferences, concerns and expectations of professional stakeholders remain largely unexplored. Empirical research, however, may help to clarify the conceptual debate and its aspects in terms of their relevance for clinical practice. This study explores, from an ethical point of view, future healthcare professionals’ attitudes to potential changes of responsibility and decision-making (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems.Jakob Mökander, Margi Sheth, David S. Watson & Luciano Floridi - 2023 - Minds and Machines 33 (1):221-248.
    Organisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ethics of the algorithmic prediction of goal of care preferences: from theory to practice.Andrea Ferrario, Sophie Gloeckler & Nikola Biller-Andorno - 2023 - Journal of Medical Ethics 49 (3):165-174.
    Artificial intelligence (AI) systems are quickly gaining ground in healthcare and clinical decision-making. However, it is still unclear in what way AI can or should support decision-making that is based on incapacitated patients’ values and goals of care, which often requires input from clinicians and loved ones. Although the use of algorithms to predict patients’ most likely preferred treatment has been discussed in the medical ethics literature, no example has been realised in clinical practice. This is due, arguably, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Enabling Fairness in Healthcare Through Machine Learning.Geoff Keeling & Thomas Grote - 2022 - Ethics and Information Technology 24 (3):1-13.
    The use of machine learning systems for decision-support in healthcare may exacerbate health inequalities. However, recent work suggests that algorithms trained on sufficiently diverse datasets could in principle combat health inequalities. One concern about these algorithms is that their performance for patients in traditionally disadvantaged groups exceeds their performance for patients in traditionally advantaged groups. This renders the algorithmic decisions unfair relative to the standard fairness metrics in machine learning. In this paper, we defend the permissible use of affirmative algorithms; (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms.Benedetta Giovanola & Simona Tiribelli - 2023 - AI and Society 38 (2):549-563.
    The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts.Paul Formosa, Wendy Rogers, Yannick Griep, Sarah Bankins & Deborah Richards - 2022 - Computers in Human Behaviour 133.
    Forms of Artificial Intelligence (AI) are already being deployed into clinical settings and research into its future healthcare uses is accelerating. Despite this trajectory, more research is needed regarding the impacts on patients of increasing AI decision making. In particular, the impersonal nature of AI means that its deployment in highly sensitive contexts-of-use, such as in healthcare, raises issues associated with patients’ perceptions of (un) dignified treatment. We explore this issue through an experimental vignette study comparing individuals’ perceptions of being (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When Doctors and AI Interact: on Human Responsibility for Artificial Risks.Mario Verdicchio & Andrea Perin - 2022 - Philosophy and Technology 35 (1):1-28.
    A discussion concerning whether to conceive Artificial Intelligence systems as responsible moral entities, also known as “artificial moral agents”, has been going on for some time. In this regard, we argue that the notion of “moral agency” is to be attributed only to humans based on their autonomy and sentience, which AI systems lack. We analyze human responsibility in the presence of AI systems in terms of meaningful control and due diligence and argue against fully automated systems in medicine. With (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • On algorithmic fairness in medical practice.Thomas Grote & Geoff Keeling - 2022 - Cambridge Quarterly of Healthcare Ethics 31 (1):83-94.
    The application of machine-learning technologies to medical practice promises to enhance the capabilities of healthcare professionals in the assessment, diagnosis, and treatment, of medical conditions. However, there is growing concern that algorithmic bias may perpetuate or exacerbate existing health inequalities. Hence, it matters that we make precise the different respects in which algorithmic bias can arise in medicine, and also make clear the normative relevance of these different kinds of algorithmic bias for broader questions about justice and fairness in healthcare. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The impact of artificial intelligence on jobs and work in New Zealand.James Maclaurin, Colin Gavaghan & Alistair Knott - 2021 - Wellington, New Zealand: New Zealand Law Foundation.
    Artificial Intelligence (AI) is a diverse technology. It is already having significant effects on many jobs and sectors of the economy and over the next ten to twenty years it will drive profound changes in the way New Zealanders live and work. Within the workplace AI will have three dominant effects. This report (funded by the New Zealand Law Foundation) addresses: Chapter 1 Defining the Technology of Interest; Chapter 2 The changing nature and value of work; Chapter 3 AI and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ethics of machine learning-based clinical decision support: an analysis through the lens of professionalisation theory.Sabine Salloch & Nils B. Heyen - 2021 - BMC Medical Ethics 22 (1):1-9.
    BackgroundMachine learning-based clinical decision support systems (ML_CDSS) are increasingly employed in various sectors of health care aiming at supporting clinicians’ practice by matching the characteristics of individual patients with a computerised clinical knowledge base. Some studies even indicate that ML_CDSS may surpass physicians’ competencies regarding specific isolated tasks. From an ethical perspective, however, the usage of ML_CDSS in medical practice touches on a range of fundamental normative issues. This article aims to add to the ethical discussion by using professionalisation theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ethics-based auditing of automated decision-making systems: nature, scope, and limitations.Jakob Mökander, Jessica Morley, Mariarosaria Taddeo & Luciano Floridi - 2021 - Science and Engineering Ethics 27 (4):1–30.
    Important decisions that impact humans lives, livelihoods, and the natural environment are increasingly being automated. Delegating tasks to so-called automated decision-making systems can improve efficiency and enable new solutions. However, these benefits are coupled with ethical challenges. For example, ADMS may produce discriminatory outcomes, violate individual privacy, and undermine human self-determination. New governance mechanisms are thus needed that help organisations design and deploy ADMS in ways that are ethical, while enabling society to reap the full economic and social benefits of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Artificial Intelligence, Social Media and Depression. A New Concept of Health-Related Digital Autonomy.Sebastian Laacke, Regina Mueller, Georg Schomerus & Sabine Salloch - 2021 - American Journal of Bioethics 21 (7):4-20.
    The development of artificial intelligence (AI) in medicine raises fundamental ethical issues. As one example, AI systems in the field of mental health successfully detect signs of mental disorders, such as depression, by using data from social media. These AI depression detectors (AIDDs) identify users who are at risk of depression prior to any contact with the healthcare system. The article focuses on the ethical implications of AIDDs regarding affected users’ health-related autonomy. Firstly, it presents the (ethical) discussion of AI (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Limits of trust in medical AI.Joshua James Hatherley - 2020 - Journal of Medical Ethics 46 (7):478-481.
    Artificial intelligence (AI) is expected to revolutionise the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI’s progress in medicine, however, has led to concerns regarding the potential effects of this technology on relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Human Autonomy at Risk? An Analysis of the Challenges from AI.Carina Prunkl - 2024 - Minds and Machines 34 (3):1-21.
    Autonomy is a core value that is deeply entrenched in the moral, legal, and political practices of many societies. The development and deployment of artificial intelligence (AI) have raised new questions about AI’s impacts on human autonomy. However, systematic assessments of these impacts are still rare and often held on a case-by-case basis. In this article, I provide a conceptual framework that both ties together seemingly disjoint issues about human autonomy, as well as highlights differences between them. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Designing AI for mental health diagnosis: challenges from sub-Saharan African value-laden judgements on mental health disorders.Edmund Terem Ugar & Ntsumi Malele - 2024 - Journal of Medical Ethics 50 (9):592-595.
    Recently clinicians have become more reliant on technologies such as artificial intelligence (AI) and machine learning (ML) for effective and accurate diagnosis and prognosis of diseases, especially mental health disorders. These remarks, however, apply primarily to Europe, the USA, China and other technologically developed nations. Africa is yet to leverage the potential applications of AI and ML within the medical space. Sub-Saharan African countries are currently disadvantaged economically and infrastructure-wise. Yet precisely, these circumstances create significant opportunities for the deployment of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Justice and the Normative Standards of Explainability in Healthcare.Saskia K. Nagel, Nils Freyer & Hendrik Kempt - 2022 - Philosophy and Technology 35 (4):1-19.
    Providing healthcare services frequently involves cognitively demanding tasks, including diagnoses and analyses as well as complex decisions about treatments and therapy. From a global perspective, ethically significant inequalities exist between regions where the expert knowledge required for these tasks is scarce or abundant. One possible strategy to diminish such inequalities and increase healthcare opportunities in expert-scarce settings is to provide healthcare solutions involving digital technologies that do not necessarily require the presence of a human expert, e.g., in the form of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Promises and Pitfalls of Algorithm Use by State Authorities.Maryam Amir Haeri, Kathrin Hartmann, Jürgen Sirsch, Georg Wenzelburger & Katharina A. Zweig - 2022 - Philosophy and Technology 35 (2):1-31.
    Algorithmic systems are increasingly used by state agencies to inform decisions about humans. They produce scores on risks of recidivism in criminal justice, indicate the probability for a job seeker to find a job in the labor market, or calculate whether an applicant should get access to a certain university program. In this contribution, we take an interdisciplinary perspective, provide a bird’s eye view of the different key decisions that are to be taken when state actors decide to use an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relative explainability and double standards in medical decision-making: Should medical AI be subjected to higher standards in medical decision-making than doctors?Saskia K. Nagel, Jan-Christoph Heilinger & Hendrik Kempt - 2022 - Ethics and Information Technology 24 (2):20.
    The increased presence of medical AI in clinical use raises the ethical question which standard of explainability is required for an acceptable and responsible implementation of AI-based applications in medical contexts. In this paper, we elaborate on the emerging debate surrounding the standards of explainability for medical AI. For this, we first distinguish several goods explainability is usually considered to contribute to the use of AI in general, and medical AI in specific. Second, we propose to understand the value of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Randomised controlled trials in medical AI: ethical considerations.Thomas Grote - 2022 - Journal of Medical Ethics 48 (11):899-906.
    In recent years, there has been a surge of high-profile publications on applications of artificial intelligence (AI) systems for medical diagnosis and prognosis. While AI provides various opportunities for medical practice, there is an emerging consensus that the existing studies show considerable deficits and are unable to establish the clinical benefit of AI systems. Hence, the view that the clinical benefit of AI systems needs to be studied in clinical trials—particularly randomised controlled trials (RCTs)—is gaining ground. However, an issue that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5):medethics - 2020-106820.
    The use of black box algorithms in medicine has raised scholarly concerns due to their opaqueness and lack of trustworthiness. Concerns about potential bias, accountability and responsibility, patient autonomy and compromised trust transpire with black box algorithms. These worries connect epistemic concerns with normative issues. In this paper, we outline that black box algorithms are less problematic for epistemic reasons than many scholars seem to believe. By outlining that more transparency in algorithms is not always necessary, and by explaining that (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Machine learning, healthcare resource allocation, and patient consent.Jamie Webb - forthcoming - The New Bioethics:1-22.
    The impact of machine learning in healthcare on patient informed consent is now the subject of significant inquiry in bioethics. However, the topic has predominantly been considered in the context of black box diagnostic or treatment recommendation algorithms. The impact of machine learning involved in healthcare resource allocation on patient consent remains undertheorized. This paper will establish where patient consent is relevant in healthcare resource allocation, before exploring the impact on informed consent from the introduction of black box machine learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Uncertainty, Evidence, and the Integration of Machine Learning into Medical Practice.Thomas Grote & Philipp Berens - 2023 - Journal of Medicine and Philosophy 48 (1):84-97.
    In light of recent advances in machine learning for medical applications, the automation of medical diagnostics is imminent. That said, before machine learning algorithms find their way into clinical practice, various problems at the epistemic level need to be overcome. In this paper, we discuss different sources of uncertainty arising for clinicians trying to evaluate the trustworthiness of algorithmic evidence when making diagnostic judgments. Thereby, we examine many of the limitations of current machine learning algorithms (with deep learning in particular) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Putting explainable AI in context: institutional explanations for medical AI.Jacob Browning & Mark Theunissen - 2022 - Ethics and Information Technology 24 (2).
    There is a current debate about if, and in what sense, machine learning systems used in the medical context need to be explainable. Those arguing in favor contend these systems require post hoc explanations for each individual decision to increase trust and ensure accurate diagnoses. Those arguing against suggest the high accuracy and reliability of the systems is sufficient for providing epistemic justified beliefs without the need for explaining each individual decision. But, as we show, both solutions have limitations—and it (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Somewhere between dystopia and utopia.Jesse Wall - 2020 - Journal of Medical Ethics 46 (3):161-162.
    The Journal of Medical Ethics can sometimes read part Men Like Gods and part A Brave New World. At times, we learn how all controversies can resolved with reference to four principles. At other times, we learn how “every discovery in pure science is potentially subversive”.1 This issue is no exception. Here, we can read about the utopia of gene editing, manufactured organs, and machine learnt algorithmic decision-making. We can also read about the dystopia of inherited disorders from edited germlines, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Automated opioid risk scores: a case for machine learning-induced epistemic injustice in healthcare.Giorgia Pozzi - 2023 - Ethics and Information Technology 25 (1):1-12.
    Artificial intelligence-based (AI) technologies such as machine learning (ML) systems are playing an increasingly relevant role in medicine and healthcare, bringing about novel ethical and epistemological issues that need to be timely addressed. Even though ethical questions connected to epistemic concerns have been at the center of the debate, it is going unnoticed how epistemic forms of injustice can be ML-induced, specifically in healthcare. I analyze the shortcomings of an ML system currently deployed in the USA to predict patients’ likelihood (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Individual benefits and collective challenges: Experts’ views on data-driven approaches in medical research and healthcare in the German context.Silke Schicktanz & Lorina Buhr - 2022 - Big Data and Society 9 (1).
    Healthcare provision, like many other sectors of society, is undergoing major changes due to the increased use of data-driven methods and technologies. This increased reliance on big data in medicine can lead to shifts in the norms that guide healthcare providers and patients. Continuous critical normative reflection is called for to track such potential changes. This article presents the results of an interview-based study with 20 German and Swiss experts from the fields of medicine, life science research, informatics and humanities (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Responsibility, second opinions and peer-disagreement: ethical and epistemological challenges of using AI in clinical diagnostic contexts.Hendrik Kempt & Saskia K. Nagel - 2022 - Journal of Medical Ethics 48 (4):222-229.
    In this paper, we first classify different types of second opinions and evaluate the ethical and epistemological implications of providing those in a clinical context. Second, we discuss the issue of how artificial intelligent could replace the human cognitive labour of providing such second opinion and find that several AI reach the levels of accuracy and efficiency needed to clarify their use an urgent ethical issue. Third, we outline the normative conditions of how AI may be used as second opinion (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Ethics-based auditing of automated decision-making systems: intervention points and policy implications.Jakob Mökander & Maria Axente - 2023 - AI and Society 38 (1):153-171.
    Organisations increasingly use automated decision-making systems (ADMS) to inform decisions that affect humans and their environment. While the use of ADMS can improve the accuracy and efficiency of decision-making processes, it is also coupled with ethical challenges. Unfortunately, the governance mechanisms currently used to oversee human decision-making often fail when applied to ADMS. In previous work, we proposed that ethics-based auditing (EBA)—that is, a structured process by which ADMS are assessed for consistency with relevant principles or norms—can (a) help organisations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Trustworthy medical AI systems need to know when they don’t know.Thomas Grote - forthcoming - Journal of Medical Ethics.
    There is much to learn from Durán and Jongsma’s paper.1 One particularly important insight concerns the relationship between epistemology and ethics in medical artificial intelligence. In clinical environments, the task of AI systems is to provide risk estimates or diagnostic decisions, which then need to be weighed by physicians. Hence, while the implementation of AI systems might give rise to ethical issues—for example, overtreatment, defensive medicine or paternalism2—the issue that lies at the heart is an epistemic problem: how can physicians (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Teasing out Artificial Intelligence in Medicine: An Ethical Critique of Artificial Intelligence and Machine Learning in Medicine.Mark Henderson Arnold - 2021 - Journal of Bioethical Inquiry 18 (1):121-139.
    The rapid adoption and implementation of artificial intelligence in medicine creates an ontologically distinct situation from prior care models. There are both potential advantages and disadvantages with such technology in advancing the interests of patients, with resultant ontological and epistemic concerns for physicians and patients relating to the instatiation of AI as a dependent, semi- or fully-autonomous agent in the encounter. The concept of libertarian paternalism potentially exercised by AI (and those who control it) has created challenges to conventional assessments (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Evaluation of the Pipeline Framework for Ethical Considerations in Machine Learning Healthcare Applications: The Case of Prediction from Functional Neuroimaging Data.Dawson J. Overton - 2020 - American Journal of Bioethics 20 (11):56-58.
    The pipeline framework for identifying ethical issues in machine learning healthcare applications outlined by Char et al. is a very useful starting point for the systematic consideration...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scoping Review Shows the Dynamics and Complexities Inherent to the Notion of “Responsibility” in Artificial Intelligence within the Healthcare Context.Sarah Bouhouita-Guermech & Hazar Haidar - 2024 - Asian Bioethics Review 16 (3):315-344.
    The increasing integration of artificial intelligence (AI) in healthcare presents a host of ethical, legal, social, and political challenges involving various stakeholders. These challenges prompt various studies proposing frameworks and guidelines to tackle these issues, emphasizing distinct phases of AI development, deployment, and oversight. As a result, the notion of responsible AI has become widespread, incorporating ethical principles such as transparency, fairness, responsibility, and privacy. This paper explores the existing literature on AI use in healthcare to examine how it addresses, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • AIgorithmic Ethics: A Technically Sweet Solution to a Non-Problem.Aurelia Sauerbrei, Nina Hallowell & Angeliki Kerasidou - 2022 - American Journal of Bioethics 22 (7):28-30.
    In their proof-of-concept study, Meier et al. built an algorithm to aid ethical decision making. In the limitations section of their paper, the authors state a frequently cited ax...
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Epistemo-ethical constraints on AI-human decision making for diagnostic purposes.Dina Babushkina & Athanasios Votsis - 2022 - Ethics and Information Technology 24 (2).
    This paper approaches the interaction of a health professional with an AI system for diagnostic purposes as a hybrid decision making process and conceptualizes epistemo-ethical constraints on this process. We argue for the importance of the understanding of the underlying machine epistemology in order to raise awareness of and facilitate realistic expectations from AI as a decision support system, both among healthcare professionals and the potential benefiters. Understanding the epistemic abilities and limitations of such systems is essential if we are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Clinicians’ roles and necessary levels of understanding in the use of artificial intelligence: A qualitative interview study with German medical students.F. Funer, S. Tinnemeyer, W. Liedtke & S. Salloch - 2024 - BMC Medical Ethics 25 (1):1-13.
    Background Artificial intelligence-driven Clinical Decision Support Systems (AI-CDSS) are being increasingly introduced into various domains of health care for diagnostic, prognostic, therapeutic and other purposes. A significant part of the discourse on ethically appropriate conditions relate to the levels of understanding and explicability needed for ensuring responsible clinical decision-making when using AI-CDSS. Empirical evidence on stakeholders’ viewpoints on these issues is scarce so far. The present study complements the empirical-ethical body of research by, on the one hand, investigating the requirements (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “That’s just Future Medicine” - a qualitative study on users’ experiences of symptom checker apps.Regina Müller, Malte Klemmt, Roland Koch, Hans-Jörg Ehni, Tanja Henking, Elisabeth Langmann, Urban Wiesing & Robert Ranisch - 2024 - BMC Medical Ethics 25 (1):1-19.
    Background Symptom checker apps (SCAs) are mobile or online applications for lay people that usually have two main functions: symptom analysis and recommendations. SCAs ask users questions about their symptoms via a chatbot, give a list with possible causes, and provide a recommendation, such as seeing a physician. However, it is unclear whether the actual performance of a SCA corresponds to the users’ experiences. This qualitative study investigates the subjective perspectives of SCA users to close the empirical gap identified in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Experts or Authorities? The Strange Case of the Presumed Epistemic Superiority of Artificial Intelligence Systems.Andrea Ferrario, Alessandro Facchini & Alberto Termine - 2024 - Minds and Machines 34 (3):1-27.
    The high predictive accuracy of contemporary machine learning-based AI systems has led some scholars to argue that, in certain cases, we should grant them epistemic expertise and authority over humans. This approach suggests that humans would have the epistemic obligation of relying on the predictions of a highly accurate AI system. Contrary to this view, in this work we claim that it is not possible to endow AI systems with a genuine account of epistemic expertise. In fact, relying on accounts (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation