Switch to: Citations

Add references

You must login to add references.
  1. Projectively well-ordered inner models.J. R. Steel - 1995 - Annals of Pure and Applied Logic 74 (1):77-104.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Iterates of the Core Model.Ralf Schindler - 2006 - Journal of Symbolic Logic 71 (1):241 - 251.
    Let N be a transitive model of ZFC such that ωN ⊂ N and P(R) ⊂ N. Assume that both V and N satisfy "the core model K exists." Then KN is an iterate of K. i.e., there exists an iteration tree J on K such that J has successor length and $\mathit{M}_{\infty}^{\mathit{J}}=K^{N}$. Moreover, if there exists an elementary embedding π: V → N then the iteration map associated to the main branch of J equals π ↾ K. (This answers (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Homogeneously Souslin sets in small inner models.Peter Koepke & Ralf Schindler - 2006 - Archive for Mathematical Logic 45 (1):53-61.
    We prove that every homogeneously Souslin set is coanalytic provided that either (a) 0long does not exist, or else (b) V = K, where K is the core model below a μ-measurable cardinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • A minimal counterexample to universal baireness.Kai Hauser - 1999 - Journal of Symbolic Logic 64 (4):1601-1627.
    For a canonical model of set theory whose projective theory of the real numbers is stable under set forcing extensions, a set of reals of minimal complexity is constructed which fails to be universally Baire. The construction uses a general method for generating non-universally Baire sets via the Levy collapse of a cardinal, as well as core model techniques. Along the way it is shown (extending previous results of Steel) how sufficiently iterable fine structure models recognize themselves as global core (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings.Akihiro Kanamori - 1994 - Springer.
    This is the softcover reprint of the very popular hardcover edition. The theory of large cardinals is currently a broad mainstream of modern set theory, the main area of investigation for the analysis of the relative consistency of mathematical propositions and possible new axioms for mathematics. The first of a projected multi-volume series, this book provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research. (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • [Omnibus Review].Yiannis N. Moschovakis - 1968 - Journal of Symbolic Logic 33 (3):471-472.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • The Core Model Iterability Problem.J. R. Steei - 2001 - Studia Logica 67 (1):124-127.
    Download  
     
    Export citation  
     
    Bookmark   15 citations