Switch to: Citations

Add references

You must login to add references.
  1. Book Review: Stewart Shapiro. Philosophy of Mathematics: Structure and Ontology. [REVIEW]John P. Burgess - 1999 - Notre Dame Journal of Formal Logic 40 (2):283-291.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Reasoning with arbitrary objects.Kit Fine - 1985 - New York, NY, USA: Blackwell.
    Contents: Preface VII; Introduction 1; 1. The General Framework 5; 2. Some Standard Systems 61; 3. Systems in General 147; 4. Non-Standard Systems 177; Bibliography 210; General Index 215; Index of Symbols 219-220.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Mathematical structuralism and the identity of indiscernibles.James Ladyman - 2005 - Analysis 65 (3):218–221.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Realistic structuralism's identity crisis: A hybrid solution.Tim Button - 2006 - Analysis 66 (3):216–222.
    Keränen (2001) raises an argument against realistic (ante rem) structuralism: where a mathematical structure has a non-trivial automorphism, distinct indiscernible positions within the structure cannot be shown to be non-identical using only the properties and relations of that structure. Ladyman (2005) responds by allowing our identity criterion to include 'irreflexive two-place relations'. I note that this does not solve the problem for structures with indistinguishable positions, i.e. positions that have all the same properties as each other and exactly the same (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • (1 other version)On Denoting.Bertrand Russell - 1905 - Mind 14 (56):479-493.
    By a `denoting phrase' I mean a phrase such as any one of the following: a man, some man, any man, every man, all men, the present King of England, the present King of France, the center of mass of the solar system at the first instant of the twentieth century, the revolution of the earth round the sun, the revolution of the sun round the earth. Thus a phrase is denoting solely in virtue of its form. We may distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   1260 citations  
  • Uniqueness in definite noun phrases.Craige Roberts - 2003 - Linguistics and Philosophy 26 (3):287-350.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Mathematics is megethology.David K. Lewis - 1993 - Philosophia Mathematica 1 (1):3-23.
    is the second-order theory of the part-whole relation. It can express such hypotheses about the size of Reality as that there are inaccessibly many atoms. Take a non-empty class to have exactly its non-empty subclasses as parts; hence, its singleton subclasses as atomic parts. Then standard set theory becomes the theory of the member-singleton function—better, the theory of all singleton functions—within the framework of megethology. Given inaccessibly many atoms and a specification of which atoms are urelements, a singleton function exists, (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Against structural universals.David K. Lewis - 1986 - Australasian Journal of Philosophy 64 (1):25 – 46.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • E-type pronouns and donkey anaphora.Irene Heim - 1990 - Linguistics and Philosophy 13 (2):137--77.
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • In defence of structural universals.D. M. Armstrong - 1986 - Australasian Journal of Philosophy 64 (1):85 – 88.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Structuralism and the identity of indiscernibles.Jeffrey Ketland - 2006 - Analysis 66 (4):303-315.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The Identity Problem for Realist Structuralism.J. Keranen - 2001 - Philosophia Mathematica 9 (3):308--330.
    According to realist structuralism, mathematical objects are places in abstract structures. We argue that in spite of its many attractions, realist structuralism must be rejected. For, first, mathematical structures typically contain intra-structurally indiscernible places. Second, any account of place-identity available to the realist structuralist entails that intra-structurally indiscernible places are identical. Since for her mathematical singular terms denote places in structures, she would have to say, for example, that 1 = − 1 in the group (Z, +). We call this (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as the (...)
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • Reasoning with Arbitrary Objects.Kit Fine - 1985 - Revue Philosophique de la France Et de l'Etranger 176 (3):402-403.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • What constitutes the numerical diversity of mathematical objects?F. MacBride - 2006 - Analysis 66 (1):63-69.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (2 other versions)Methods of logic.Willard Van Orman Quine - 1962 - Cambridge: Harvard University Press.
    Provides comprehensive coverage of logical structure as well as the techniques of formal reasoning.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • Criteria of identity and structuralist ontology.Hannes Leitgib & James Ladyman - 2008 - Philosophia Mathematica 16 (3):388-396.
    In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The Reason's Proper Study: Essays toward a Neo-Fregean Philosophy of Mathematics.Bob Hale & Crispin Wright - 2001 - Bulletin of Symbolic Logic 12 (2):291-294.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Foundations without Foundationalism: A Case for Second-Order Logic.Gila Sher - 1994 - Philosophical Review 103 (1):150.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Structuralism reconsidered.Fraser MacBride - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 563--589.
    The basic relations and functions that mathematicians use to identify mathematical objects fail to settle whether mathematical objects of one kind are identical to or distinct from objects of an apparently different kind, and what, if any, intrinsic properties mathematical objects possess. According to one influential interpretation of mathematical discourse, this is because the objects under study are themselves incomplete; they are positions or akin to positions in patterns or structures. Two versions of this idea are examined. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The Significance of Complex Numbers for Frege's Philosophy of Mathematics.Robert Brandom - 1996 - Proceedings of the Aristotelian Society 96 (1):293 - 315.
    Robert Brandom; XII*—The Significance of Complex Numbers for Frege's Philosophy of Mathematics1, Proceedings of the Aristotelian Society, Volume 96, Issue 1, 1.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Platonism and aristotelianism in mathematics.Richard Pettigrew - 2008 - Philosophia Mathematica 16 (3):310-332.
    Philosophers of mathematics agree that the only interpretation of arithmetic that takes that discourse at 'face value' is one on which the expressions 'N', '0', '1', '+', and 'x' are treated as proper names. I argue that the interpretation on which these expressions are treated as akin to free variables has an equal claim to be the default interpretation of arithmetic. I show that no purely syntactic test can distinguish proper names from free variables, and I observe that any semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Logic and structure.D. van Dalen - 1980 - New York: Springer Verlag.
    From the reviews: "A good textbook can improve a lecture course enormously, especially when the material of the lecture includes many technical details. Van Dalen's book, the success and popularity of which may be suspected from this steady interest in it, contains a thorough introduction to elementary classical logic in a relaxed way, suitable for mathematics students who just want to get to know logic. The presentation always points out the connections of logic to other parts of mathematics. The reader (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Greek Mathematical Thought and the Origin of Algebra.Jacob Klein - 1968 - M. I. T. Press.
    Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th–16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. This brought about the crucial change in the concept of number that made possible modern science — in which the symbolic "form" of a mathematical statement is completely inseparable from its "content" of physical meaning. Includes a translation of Vieta's Introduction to the Analytical Art. 1968 edition. Bibliography.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Reasoning with Arbitrary Objects.John Macnamara - 1988 - Journal of Symbolic Logic 53 (1):305.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Structural Universals and Formal Relations.Joan Pagés - 2002 - Synthese 131 (2):215 - 221.
    I will consider Armstrong's problems in trying to account for structural universals, i.e., a kind of complex universal whose instantiation by particulars involves different parts of those particulars instantiating several basic properties and relations, such as the property of being a molecule of methane. I present and criticise Armstrong's most recent attempt to explain structural properties by means of the identification of universals with types of states of affairs and I state my own solution to the problem by appealing to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Neither magic nor mereology: A reply to Lewis.Peter Forrest - 1986 - Australasian Journal of Philosophy 64 (1):89 – 91.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Greek Mathematical Thought and the Origin of Algebra.Jacob Klein, Eva Brann & J. Winfree Smith - 1969 - British Journal for the Philosophy of Science 20 (4):374-375.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • (1 other version)Methods of Logic.P. L. Heath & Willard Van Orman Quine - 1955 - Philosophical Quarterly 5 (21):376.
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Towards structural universals.John Bigelow - 1986 - Australasian Journal of Philosophy 64 (1):94 – 96.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1988 - Meiner, F.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (2 other versions)Logic and Structure.Melvin Fitting - 1986 - Journal of Symbolic Logic 51 (3):826-827.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Book Reviews. [REVIEW]Wilfrid Hodges - 1997 - Studia Logica 64 (1):133-149.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Mathematical structuralism and the Identity of Indiscernibles.Jac Ladyman - 2005 - Analysis 65 (3):218-221.
    Download  
     
    Export citation  
     
    Bookmark   45 citations