Switch to: References

Add citations

You must login to add citations.
  1. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Conventionalist Account of Distinctively Mathematical Explanation.Mark Povich - 2023 - Philosophical Problems in Science 74:171–223.
    Distinctively mathematical explanations (DMEs) explain natural phenomena primarily by appeal to mathematical facts. One important question is whether there can be an ontic account of DME. An ontic account of DME would treat the explananda and explanantia of DMEs as ontic structures and the explanatory relation between them as an ontic relation (e.g., Pincock 2015, Povich 2021). Here I present a conventionalist account of DME, defend it against objections, and argue that it should be considered ontic. Notably, if indeed it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Sense-Data Language and External World Skepticism.Jared Warren - 2024 - In Uriah Kriegel (ed.), Oxford Studies in Philosophy of Mind Vol 4. Oxford University Press.
    We face reality presented with the data of conscious experience and nothing else. The project of early modern philosophy was to build a complete theory of the world from this starting point, with no cheating. Crucial to this starting point is the data of conscious sensory experience – sense data. Attempts to avoid this project often argue that the very idea of sense data is confused. But the sense-data way of talking, the sense-data language, can be freed from every blemish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • From thin objects to thin concepts?Massimiliano Carrara, Ciro De Florio & Francesca Poggiolesi - 2023 - Theoria 89 (3):256-265.
    In this short paper we consider Linnebo's thin/thick dichotomy: first, we show that it does not overlap with the very common one between abstract/concrete objects; second, on the basis of some difficulties with the distinction, we propose, as a possible way out, to move from thin/thick objects to thin/thick concepts.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Form and the Development of Russell’s Logicism.Kevin C. Klement - 2022 - In F. Boccuni & A. Sereni (eds.), Origins and Varieties of Logicism. Routledge. pp. 147–166.
    Logicism is the view that mathematical truths are logical truths. But a logical truth is commonly thought to be one with a universally valid form. The form of “7 > 5” would appear to be the same as “4 > 6”. Yet one is a mathematical truth, and the other not a truth at all. To preserve logicism, we must maintain that the two either are different subforms of the same generic form, or that their forms are not at all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • No “Easy” Answers to Ontological Category Questions.Vera Flocke & Katherine Ritchie - 2023 - Philosophical Perspectives 36 (1):78-94.
    Easy Ontologists, most notably Thomasson (2015), argue that ontological questions are shallow. They think that these questions can either be answered by using our ordinary conceptual competence—of course tables exist!—or are meaningless, or else should be answered through conceptual re-engineering. Ontology thus is “easy”, requiring no distinctively metaphysical investigation. This paper raises a two-stage objection to Easy Ontology. We first argue that questions concerning which entities exist are inextricably bound up with “ontological category questions”, which are questions concerning the identity (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Linnebo's Abstractionism and the Bad Company Problem.J. P. Studd - 2023 - Theoria 89 (3):366-392.
    In Thin Objects: An Abstractionist Account, Linnebo offers what he describes as a “simple and definitive” solution to the bad company problem facing abstractionist accounts of mathematics. “Bad” abstraction principles can be rendered “good” by taking abstraction to have a predicative character. But the resulting predicative axioms are too weak to recover substantial portions of mathematics. Linnebo pursues two quite different strategies to overcome this weakness in the case of set theory and arithmetic. I argue that neither infinitely iterated abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Framing the Epistemic Schism of Statistical Mechanics.Javier Anta - 2021 - Proceedings of the X Conference of the Spanish Society of Logic, Methodology and Philosophy of Science.
    In this talk I present the main results from Anta (2021), namely, that the theoretical division between Boltzmannian and Gibbsian statistical mechanics should be understood as a separation in the epistemic capabilities of this physical discipline. In particular, while from the Boltzmannian framework one can generate powerful explanations of thermal processes by appealing to their microdynamics, from the Gibbsian framework one can predict observable values in a computationally effective way. Finally, I argue that this statistical mechanical schism contradicts the Hempelian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What the heck is Logic? Logics-as-formalizations, a nihilistic approach.Aadil Kurji - 2020 - Dissertation,
    Logic is about reasoning, or so the story goes. This thesis looks at the concept of logic, what it is, and what claims of correctness of logics amount to. The concept of logic is not a settled matter, and has not been throughout the history of it as a notion. Tools from conceptual analysis aid in this historical venture. Once the unsettledness of logic is established we see the repercussions in current debates in the philosophy of logic. Much of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.
    Richard Kimberly Heck and Paolo Mancosu have claimed that the possibility of non-Cantorian assignments of cardinalities to infinite concepts shows that Hume's Principle (HP) is not implicit in the concept of cardinal number. Neologicism would therefore be threatened by the ‘good company' HP is kept by such alternative assignments. In his review of Mancosu's book, Bob Hale argues, however, that ‘getting different numerosities for different countable infinite collections depends on taking the groups in a certain order – but it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Functional Composition of Sense.Bryan Pickel - 2021 - Synthese 199 (3-4):6917-6942.
    A central dispute in understanding Frege’s philosophy concerns how the sense of a complex expression relates to the senses of its component expressions. According to one reading, the sense of a complex expression is a whole built from the senses of the component expressions. On this interpretation, Frege is an early proponent of structured propositions. A rival reading says that senses compose by functional application: the sense of a complex expression is the value of the function denoted by its functional (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The unbearable circularity of easy ontology.Jonas Raab - 2021 - Synthese 199 (1-2):3527-3556.
    In this paper, I argue that Amie Thomasson’s Easy Ontology rests on a vicious circularity that is highly damaging. Easy Ontology invokes the idea of application conditions that give rise to analytic entailments. Such entailments can be used to answer ontological questions easily. I argue that the application conditions for basic terms are only circularly specifiable showing that Thomasson misses her self-set goal of preventing such a circularity. Using this circularity, I go on to show that Easy Ontology as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Conceivability, Essence, and Haecceities.David Elohim - manuscript
    This essay aims to redress the contention that epistemic possibility cannot be a guide to the principles of modal metaphysics. I introduce a novel epistemic two-dimensional truthmaker semantics. I argue that the interaction between the two-dimensional framework and the mereological parthood relation, which is super-rigid, enables epistemic possibilities and truthmakers with regard to parthood to be a guide to its metaphysical profile. I specify, further, a two-dimensional formula encoding the relation between the epistemic possibility and verification of essential properties obtaining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grounding and auto-abstraction.Luca Zanetti - 2020 - Synthese 198 (11):10187-10205.
    Abstraction principles and grounding can be combined in a natural way Modality: metaphysics, logic, and epistemology, Oxford University Press, Oxford, pp 109–136, 2010; Schwartzkopff in Grazer philosophische studien 82:353–373, 2011). However, some ground-theoretic abstraction principles entail that there are circles of partial ground :775–801, 2017). I call this problem auto-abstraction. In this paper I sketch a solution. Sections 1 and 2 are introductory. In Sect. 3 I start comparing different solutions to the problem. In Sect. 4 I contend that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Counterfactual Logic and the Necessity of Mathematics.Samuel Elgin - manuscript
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propositions on the cheap.Alex Grzankowski & Ray Buchanan - 2019 - Philosophical Studies 176 (12):3159-3178.
    According to the classical account, propositions are sui generis, abstract, intrinsically-representational entities and our cognitive attitudes, and the token states within us that realize those attitudes, represent as they do in virtue of their propositional objects. In light of a desire to explain how it could be that propositions represent, much of the recent literature on propositions has pressured various aspects of this account. In place of the classical account, revisionists have aimed to understand propositions in terms of more familiar (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Scientific Models and Metalinguistic Negotiation.Mirco Sambrotta - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):277.
    The aim of this paper is to explore the possibility that, at least, some metaphysical debates are ‘metalinguistic negotiations’. I will take the dispute between the dominant approaches of realism and the anti-realism ones about the ontological status of scientific models as a case-study. I will argue that such a debate may be better understood as a disagreement, at bottom normatively, motivated, insofar as a normative and non-factual question may be involved in it: how the relevant piece of language ought (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • To Shape a New World, Tommie Shelby and Brandon Terry.Myisha Cherry - 2020 - Mind 129 (514):656-664.
    To Shape a New World, ShelbyTommie and TerryBrandon. Cambridge, MA: Harvard University Press, 2018. Pp. x + 449.
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstractionism and Mathematical Singular Reference.Bahram Assadian - 2019 - Philosophia Mathematica 27 (2):177-198.
    ABSTRACT Is it possible to effect singular reference to mathematical objects in the abstractionist framework? I will argue that even if mathematical expressions pass the relevant syntactic and inferential tests to qualify as singular terms, that does not mean that their semantic function is to refer to a particular object. I will defend two arguments leading to this claim: the permutation argument for the referential indeterminacy of mathematical terms, and the argument from the semantic idleness of the terms introduced by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Transcendental Idealism Without Tears.Nicholas Stang - 2017 - In K. Pearce & T. Goldschmidt (eds.), Idealism: New Essays in Metaphysics. Oxford University Press. pp. 82-103.
    This essay is an attempt to explain Kantian transcendental idealism to contemporary metaphysicians and make clear its relevance to contemporary debates in what is now called ‘meta-metaphysics.’ It is not primarily an exegetical essay, but an attempt to translate some Kantian ideas into a contemporary idiom.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Varieties of Abstract Objects.James E. Davies - 2019 - Australasian Journal of Philosophy 97 (4):809-823.
    I reconcile the spatiotemporal location of repeatable artworks and impure sets with the non-location of natural numbers despite all three being varieties of abstract objects. This is possible because, while the identity conditions for all three can be given by abstraction principles, in the former two cases spatiotemporal location is a congruence for the equivalence relation featuring in the relevant principle, whereas in the latter it is not. I then generalize this to other ‘physical’ properties like shape, mass, and causal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dimensions: A New Ontology of Properties.Xi-Yang Guo - 2017 - Dissertation, University of Durham
    This thesis advances and defends a novel two-category ontology of objects and dimensions, latterly conceived as respects of comparability. The proposed 'dimensionist' ontology is set out and brought to bear on discussions of determinables and determinates, the problem of universals, fact ontologies, and nomic governance. Dimensionism is argued to fare well in comparison to a range of rival ontological accounts of property possession. A metametaphysical framework is set out to undergird the discussion, which draws on both realist and pragmatist resources.
    Download  
     
    Export citation  
     
    Bookmark  
  • Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the explanatory power of truth in logic.Gila Sher - 2018 - Philosophical Issues 28 (1):348-373.
    Philosophers are divided on whether the proof- or truth-theoretic approach to logic is more fruitful. The paper demonstrates the considerable explanatory power of a truth-based approach to logic by showing that and how it can provide (i) an explanatory characterization —both semantic and proof-theoretical—of logical inference, (ii) an explanatory criterion for logical constants and operators, (iii) an explanatory account of logic’s role (function) in knowledge, as well as explanations of (iv) the characteristic features of logic —formality, strong modal force, generality, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Essence and definition by abstraction.Bob Hale - 2018 - Synthese 198 (Suppl 8):2001-2017.
    We may define words or concepts, and we may also, as Aristotle and others have thought, define the things for which words stand and of which concepts are concepts. Definitions of words or concepts may be explicit or implicit, and may seek to report preexisting synonymies, as Quine put it, but they may instead be wholly or partly stipulative. Definition by abstraction, of which Hume’s principle is a much discussed example, seek to define a term-forming operator, such as the number (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • La Meme Chose: How Mathematics Can Explain the Thinking of Children and the Thinking of Children Can Illuminate Mathematical Philosophy.John Cable - 2014 - Science & Education 23 (1):223-240.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemological Question of the Applicability of Mathematics.Paola Cantù - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The question of the applicability of mathematics is an epistemological issue that was explicitly raised by Kant, and which has played different roles in the works of neo-Kantian philosophers, before becoming an essential issue in early analytic philosophy. This paper will first distinguish three main issues that are related to the application of mathematics: indispensability arguments that are aimed at justifying mathematics itself; philosophical justifications of the successful application of mathematics to scientific theories; and discussions on the application of real (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstracta.Gonçalo Santos - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    A noção de objecto abstracto desempenha um papel central em diferentes debates filosóficos contemporâneos, da metafísica à estética, passando pela filosofia da linguagem. A sua origem está contudo relacionada com a filosofia da matemática e em particular, com o trabalho de Frege nos fundamentos da aritmética. O nosso primeiro objectivo será assim o de explicar o contributo desta noção para o entendimento Fregeano da realidade matemática. Veremos também que, em virtude de certas dificuldades inerentes ao projeto Fregeano, a dada altura (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. The principle is: for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can an Ontological Pluralist Really be a Realist?J. T. M. Miller - 2016 - Metaphilosophy 47 (3):425-430.
    This article examines whether it is possible to uphold one form of deflationism towards metaphysics, ontological pluralism, whilst maintaining metaphysical realism. The focus therefore is on one prominent deflationist who fits the definition of an ontological pluralist, Eli Hirsch, and his self-ascription as a realist. The article argues that ontological pluralism is not amenable to the ascription of realism under some basic intuitions as to what a “realist” position is committed to. These basic intuitions include a commitment to more than (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Getting off the Inwagen: A Critique of Quinean Metaontology.Karl Egerton - 2016 - Journal for the History of Analytical Philosophy 4 (6).
    Much contemporary ontological inquiry takes place within the so-called ‘Quinean tradition’ but, given that some aspects of Quine’s project have been widely abandoned even by those who consider themselves Quineans, it is unclear what this amounts to. Fortunately recent work in metaontology has produced two relevant results here: a clearer characterisation of the metaontology uniting the aforementioned Quineans, most notably undertaken by Peter van Inwagen, and a raft of criticisms of that metaontology. In this paper I critique van Inwagen’s Quinean (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The (Metaphysical) Foundations of Arithmetic?Thomas Donaldson - 2017 - Noûs 51 (4):775-801.
    Gideon Rosen and Robert Schwartzkopff have independently suggested (variants of) the following claim, which is a varian of Hume's Principle: -/- When the number of Fs is identical to the number of Gs, this fact is grounded by the fact that there is a one-to-one correspondence between the Fs and Gs. -/- My paper is a detailed critique of the proposal. I don't find any decisive refutation of the proposal. At the same time, it has some consequences which many will (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • On Specifying Truth-Conditions.Agustín Rayo - 2008 - Philosophical Review 117 (3):385-443.
    This essay is a study of ontological commitment, focused on the special case of arithmetical discourse. It tries to get clear about what would be involved in a defense of the claim that arithmetical assertions are ontologically innocent and about why ontological innocence matters. The essay proceeds by questioning traditional assumptions about the connection between the objects that are used to specify the truth-conditions of a sentence, on the one hand, and the objects whose existence is required in order for (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Naming, Saying, and Structure.Bryan Pickel - 2017 - Noûs 51 (3):594-616.
    It is commonplace for philosophers to distinguish mere truths from truths that perspicuously represent the world's structure. According to a popular view, the perspicuous truths are supposed to be metaphysically revelatory and to play an important role in the accounts of law-hood, confirmation, and linguistic interpretation. Yet, there is no consensus about how to characterize this distinction. I examine strategies developed by Lewis and by Sider in his Writing the Book of the World which purport to explain this distinction in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Vindication of Logicism.Peter Roeper - 2016 - Philosophia Mathematica 24 (3):360-378.
    Frege regarded Hume's Principle as insufficient for a logicist account of arithmetic, as it does not identify the numbers; it does not tell us which objects the numbers are. His solution, generally regarded as a failure, was to propose certain sets as the referents of numerical terms. I suggest instead that numbers are properties of pluralities, where these properties are treated as objects. Given this identification, the truth-conditions of the statements of arithmetic can be obtained from logical principles with the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Trivialist's Travails.Thomas Donaldson - 2014 - Philosophia Mathematica 22 (3):380-401.
    This paper is an exposition and evaluation of the Agustín Rayo's views about the epistemology and metaphysics of mathematics, as they are presented in his book The Construction of Logical Space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • More Reflections on Consequence.Julien Murzi & Massimiliano Carrara - 2014 - Logique Et Analyse 57 (227):223-258.
    This special issue collects together nine new essays on logical consequence :the relation obtaining between the premises and the conclusion of a logically valid argument. The present paper is a partial, and opinionated,introduction to the contemporary debate on the topic. We focus on two influential accounts of consequence, the model-theoretic and the proof-theoretic, and on the seeming platitude that valid arguments necessarilypreserve truth. We briefly discuss the main objections these accounts face, as well as Hartry Field’s contention that such objections (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In defence of existence questions.Chris Daly & David Liggins - 2014 - Monist 97 (7):460–478.
    Do numbers exist? Do properties? Do possible worlds? Do fictional characters? Many metaphysicians spend time and effort trying to answer these and other questions about the existence of various entities. These inquiries have recently encountered opposition: a group of philosophers, drawing inspiration from Aristotle, have argued that many or all of the existence questions debated by metaphysicians can be answered trivially, and so are not worth debating. Our task is to defend existence questions from the neo-Aristotelians' attacks.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstraction Relations Need Not Be Reflexive.Jonathan Payne - 2013 - Thought: A Journal of Philosophy 2 (2):137-147.
    Neo-Fregeans such as Bob Hale and Crispin Wright seek a foundation of mathematics based on abstraction principles. These are sentences involving a relation called the abstraction relation. It is usually assumed that abstraction relations must be equivalence relations, so reflexive, symmetric and transitive. In this article I argue that abstraction relations need not be reflexive. I furthermore give an application of non-reflexive abstraction relations to restricted abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   3 citations