Switch to: Citations

Add references

You must login to add references.
  1. Methodology, ontology, and interventionism.James Woodward - 2015 - Synthese 192 (11):3577-3599.
    This paper defends an interventionist account of causation by construing this account as a contribution to methodology, rather than as a set of theses about the ontology or metaphysics of causation. It also uses the topic of causation to raise some more general issues about the relation between, on the one hand, methodology, and, on the other hand, ontology and metaphysics, as these are understood in contemporary philosophical discussion, particularly among so-called analytic metaphysicians. It concludes with the suggestion that issues (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Biological clocks: explaining with models of mechanisms.Sarah K. Robins & Carl F. Craver - 2009 - In John Bickle (ed.), The Oxford handbook of philosophy and neuroscience. New York: Oxford University Press. pp. 41--67.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • No Levels, No Problems: Downward Causation in Neuroscience.Markus I. Eronen - 2013 - Philosophy of Science 80 (5):1042-1052.
    I show that the recent account of levels in neuroscience proposed by Craver and Bechtel is unsatisfactory since it fails to provide a plausible criterion for being at the same level and is incompatible with Craver and Bechtel’s account of downward causation. Furthermore, I argue that no distinct notion of levels is needed for analyzing explanations and causal issues in neuroscience: it is better to rely on more well-defined notions such as composition and scale. One outcome of this is that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Causal and Constitutive Explanation Compared.Petri Ylikoski - 2013 - Erkenntnis 78 (2):277-297.
    This article compares causal and constitutive explanation. While scientific inquiry usually addresses both causal and constitutive questions, making the distinction is crucial for a detailed understanding of scientific questions and their interrelations. These explanations have different kinds of explananda and they track different sorts of dependencies. Constitutive explanations do not address events or behaviors, but causal capacities. While there are some interesting relations between building and causal manipulation, causation and constitution are not to be confused. Constitution is a synchronous and (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Causation by Concentration.Marco J. Nathan - 2014 - British Journal for the Philosophy of Science 65 (2):191-212.
    This essay is concerned with concentrations of entities, which play an important—albeit often overlooked—role in scientific explanation. First, I discuss an example from molecular biology to show that concentrations can play an irreducible causal role. Second, I provide a preliminary philosophical analysis of this causal role, suggesting some implications for extant theories of causation. I conclude by introducing the concept of causation by concentration, a form of statistical causation whose widespread presence throughout the sciences has been unduly neglected and which (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Limitations of Hierarchical Organization.Angela Potochnik & Brian McGill - 2012 - Philosophy of Science 79 (1):120-140.
    The concept of hierarchical organization is commonplace in science. Subatomic particles compose atoms, which compose molecules; cells compose tissues, which compose organs, which compose organisms; etc. Hierarchical organization is particularly prominent in ecology, a field of research explicitly arranged around levels of ecological organization. The concept of levels of organization is also central to a variety of debates in philosophy of science. Yet many difficulties plague the concept of discrete hierarchical levels. In this paper, we show how these difficulties undermine (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The Explanatory Force of Dynamical and Mathematical Models in Neuroscience: A Mechanistic Perspective.David Michael Kaplan & Carl F. Craver - 2011 - Philosophy of Science 78 (4):601-627.
    We argue that dynamical and mathematical models in systems and cognitive neuro- science explain (rather than redescribe) a phenomenon only if there is a plausible mapping between elements in the model and elements in the mechanism for the phe- nomenon. We demonstrate how this model-to-mechanism-mapping constraint, when satisfied, endows a model with explanatory force with respect to the phenomenon to be explained. Several paradigmatic models including the Haken-Kelso-Bunz model of bimanual coordination and the difference-of-Gaussians model of visual receptive fields are (...)
    Download  
     
    Export citation  
     
    Bookmark   195 citations  
  • Thinking Dynamically About Biological Mechanisms: Networks of Coupled Oscillators. [REVIEW]William Bechtel & Adele A. Abrahamsen - 2013 - Foundations of Science 18 (4):707-723.
    Explaining the complex dynamics exhibited in many biological mechanisms requires extending the recent philosophical treatment of mechanisms that emphasizes sequences of operations. To understand how nonsequentially organized mechanisms will behave, scientists often advance what we call dynamic mechanistic explanations. These begin with a decomposition of the mechanism into component parts and operations, using a variety of laboratory-based strategies. Crucially, the mechanism is then recomposed by means of computational models in which variables or terms in differential equations correspond to properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Downs and Ups of Mechanistic Research: Circadian Rhythm Research as an Exemplar. [REVIEW]William Bechtel - 2010 - Erkenntnis 73 (3):313 - 328.
    In the context of mechanistic explanation, reductionistic research pursues a decomposition of complex systems into their component parts and operations. Using research on the mechanisms responsible for circadian rhythms, I consider both the gains that have been made by discovering genes and proteins that figure in these intracellular oscillators and also highlight the increasingly recognized need to understand higher-level integration, both between cells in the central oscillator and between the central and peripheral oscillators. This history illustrates a common need to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1659 citations  
  • (1 other version)Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   399 citations  
  • Review of Woodward, M aking Things Happen. [REVIEW]Michael Strevens - 2007 - Philosophy and Phenomenological Research 74 (1):233–249.
    The concept of causation plays a central role in many philosophical theories, and yet no account of causation has gained widespread acceptance among those who have investigated its foundations. Theories based on laws, counterfactuals, physical processes, and probabilistic dependence and independence relations (the list is by no means exhaustive) have all received detailed treatment in recent years---{}and, while no account has been entirely successful, it is generally agreed that the concept has been greatly clari{}ed by the attempts. In this magni{}cent (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Top-down causation without top-down causes.Carl F. Craver & William Bechtel - 2007 - Biology and Philosophy 22 (4):547-563.
    We argue that intelligible appeals to interlevel causes (top-down and bottom-up) can be understood, without remainder, as appeals to mechanistically mediated effects. Mechanistically mediated effects are hybrids of causal and constitutive relations, where the causal relations are exclusively intralevel. The idea of causation would have to stretch to the breaking point to accommodate interlevel causes. The notion of a mechanistically mediated effect is preferable because it can do all of the required work without appealing to mysterious interlevel causes. When interlevel (...)
    Download  
     
    Export citation  
     
    Bookmark   239 citations  
  • Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience. [REVIEW]John Bickle - 2006 - Synthese 151 (3):411-434.
    As opposed to the dismissive attitude toward reductionism that is popular in current philosophy of mind, a “ruthless reductionism” is alive and thriving in “molecular and cellular cognition”—a field of research within cellular and molecular neuroscience, the current mainstream of the discipline. Basic experimental practices and emerging results from this field imply that two common assertions by philosophers and cognitive scientists are false: (1) that we do not know much about how the brain works, and (2) that lower-level neuroscience cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1342 citations  
  • (1 other version)Mechanisms without mechanistic explanation.Naftali Weinberger - 2017 - Synthese:1-18.
    Some recent accounts of constitutive relevance have identified mechanism components with entities that are causal intermediaries between the input and output of a mechanism. I argue that on such accounts there is no distinctive inter-level form of mechanistic explanation and that this highlights an absence in the literature of a compelling argument that there are such explanations. Nevertheless, the entities that these accounts call ‘components’ do play an explanatory role. Studying causal intermediaries linking variables Xand Y provides knowledge of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extended Mechanistic Explanations: Expanding the Current Mechanistic Conception to Include More Complex Biological Systems.Sarah M. Roe & Bert Baumgaertner - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (4):517-534.
    Mechanistic accounts of explanation have recently found popularity within philosophy of science. Presently, we introduce the idea of an extended mechanistic explanation, which makes explicit room for the role of environment in explanation. After delineating Craver and Bechtel’s account, we argue this suggestion is not sufficiently robust when we take seriously the mechanistic environment and modeling practices involved in studying contemporary complex biological systems. Our goal is to extend the already profitable mechanistic picture by pointing out the importance of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Explicating Top-­‐Down Causation Using Networks and Dynamics.William Bechtel - 2017 - Philosophy of Science 84 (2):253-274.
    In many fields in the life sciences investigators refer to downward or top-down causal effects. Craver and Bechtel defended the view that such cases should be understood in terms of a constitution relation between levels in a mechanism and causation as solely an intra-level relation. Craver and Bechtel, however, provided insufficient specification as to when entities constitute a higher-level mechanism. In this paper I appeal to graph-theoretic representations of networks that are now widely employed in systems biology and neuroscience to (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • In Search of Mitochondrial Mechanisms: Interfield Excursions between Cell Biology and Biochemistry.William Bechtel & Adele Abrahamsen - 2007 - Journal of the History of Biology 40 (1):1-33.
    Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Looking down, around, and up: Mechanistic explanation in psychology.William Bechtel - 2009 - Philosophical Psychology 22 (5):543-564.
    Accounts of mechanistic explanation have emphasized the importance of looking down—decomposing a mechanism into its parts and operations. Using research on visual processing as an exemplar, I illustrate how productive such research has been. But once multiple components of a mechanism have been identified, researchers also need to figure out how it is organized—they must look around and determine how to recompose the mechanism. Although researchers often begin by trying to recompose the mechanism in terms of sequential operations, they frequently (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • (1 other version)Mechanisms without mechanistic explanation.Naftali Weinberger - 2019 - Synthese 196 (6):2323-2340.
    Some recent accounts of constitutive relevance have identified mechanism components with entities that are causal intermediaries between the input and output of a mechanism. I argue that on such accounts there is no distinctive inter-level form of mechanistic explanation and that this highlights an absence in the literature of a compelling argument that there are such explanations. Nevertheless, the entities that these accounts call ‘components’ do play an explanatory role. Studying causal intermediaries linking variables Xand Y provides knowledge of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Connection experiments in neurobiology.John Bickle & Aaron Kostko - 2018 - Synthese 195 (12):5271-5295.
    Accounts of causal explanation are standard in philosophy of science. Less common are accounts of experimentation to investigate causal relations: detailed discussions of the specific kinds of experiments scientists design and run. Silva, Landreth, and Bickle’s account of “connection experiments” derives directly from landmark experiments in “molecular and cellular cognition.” We start with its key components, and then using a detailed case study from recent social neuroscience we emphasize and extend three features of SLB’s account: a division of distinct types (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Causal Concepts in Biology: How Pathways Differ from Mechanisms and Why It Matters.Lauren N. Ross - 2021 - British Journal for the Philosophy of Science 72 (1):131-158.
    In the last two decades few topics in philosophy of science have received as much attention as mechanistic explanation. A significant motivation for these accounts is that scientists frequently use the term “mechanism” in their explanations of biological phenomena. While scientists appeal to a variety of causal concepts in their explanations, many philosophers argue or assume that all of these concepts are well understood with the single notion of mechanism. This reveals a significant problem with mainstream mechanistic accounts– although philosophers (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Development and mechanistic explanation.Fabrizzio Mc Manus - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):532-541.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Development and mechanistic explanation.Fabrizzio Manus - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):532-541.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   416 citations  
  • Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • Distributed loci of control: Overcoming stale dichotomies in biology and cognitive science.Daniel C. Burnston & Antonella Tramacere - 2023 - Rivista Internazionale di Filosofia e Psicologia 14:103-117.
    _Abstract_: We argue that theoretical debates in biology and cognitive science often are based around differences in the posited _locus of control _for biological and cognitive phenomena. Internalists about locus of control posit that specific causal control over the phenomenon is exerted by factors internal (to the relevant subsystem) of an organism. Externalists posit that causally specific influence is due to external factors. In theoretical biology, we suggest, a minimal agreement has developed that the locus of control for heritable variation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Laser Lights and Designer Drugs: New Techniques for Descending Levels of Mechanisms “in a Single Bound”?John Bickle - 2020 - Topics in Cognitive Science 12 (4):1241-1256.
    Optogenetics and DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) are important research tools in recent neurobiology. These tools allow unprecedented control over activity in specifically targeted neurons in behaving animals. Two approaches in philosophy of neuroscience, mechanism and ruthless reductionism, provide explicit accounts of experiments and results using tools like these, but each offers a different picture about how levels of mechanisms relate. I argue here that the ruthless reductionist’s direct mind‐to‐cellular/molecular activities linkages “in a single bound” better fits (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mechanists Must be Holists Too! Perspectives from Circadian Biology.William Bechtel - 2016 - Journal of the History of Biology 49 (4):705-731.
    The pursuit of mechanistic explanations in biology has produced a great deal of knowledge about the parts, operations, and organization of mechanisms taken to be responsible for biological phenomena. Holist critics have often raised important criticisms of proposed mechanistic explanations, but until recently holists have not had alternative research strategies through which to advance explanations. This paper argues both that the results of mechanistic strategies has forced mechanists to confront ways in which whole systems affect their components and that new (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation.Ingo Brigandt - 2015 - In P.-A. Braillard & C. Malaterre (eds.), Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Springer. pp. 135-173.
    Evolutionary developmental biology (evo-devo) is considered a ‘mechanistic science,’ in that it causally explains morphological evolution in terms of changes in developmental mechanisms. Evo-devo is also an interdisciplinary and integrative approach, as its explanations use contributions from many fields and pertain to different levels of organismal organization. Philosophical accounts of mechanistic explanation are currently highly prominent, and have been particularly able to capture the integrative nature of multifield and multilevel explanations. However, I argue that evo-devo demonstrates the need for a (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Perspectives on integrating genetic and physical explanations of evolution and development.Alan Love, Thomas Stewart, Gunter Wagner & Stuart Newman - 2017 - Integrative and Comparative Biology:icx121.
    In the 20th century, genetic explanatory approaches became dominant in both developmental and evolutionary biological research. By contrast, physical approaches, which appeal to properties such as mechanical forces, were largely relegated to the margins, despite important advances in modeling. Recently, there have been renewed attempts to find balanced viewpoints that integrate both biological physics and molecular genetics into explanations of developmental and evolutionary phenomena. Here we introduce the 2017 SICB symposium “Physical and Genetic Mechanisms for Evolutionary Novelty” that was dedicated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations