Switch to: Citations

References in:

The Price of Universality

Philosophical Studies 129 (1):137-169 (2006)

Add references

You must login to add references.
  1. Parts of Classes.David K. Lewis - 1990 - Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   615 citations  
  • Set Theory and its Philosophy: A Critical Introduction.Michael D. Potter - 2004 - Oxford, England: Oxford University Press.
    Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Toward a Theory of Second-Order Consequence.Augustín Rayo & Gabriel Uzquiano - 1999 - Notre Dame Journal of Formal Logic 40 (3):315-325.
    There is little doubt that a second-order axiomatization of Zermelo-Fraenkel set theory plus the axiom of choice (ZFC) is desirable. One advantage of such an axiomatization is that it permits us to express the principles underlying the first-order schemata of separation and replacement. Another is its almost-categoricity: M is a model of second-order ZFC if and only if it is isomorphic to a model of the form Vκ, ∈ ∩ (Vκ × Vκ) , for κ a strongly inaccessible ordinal.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Everything.Timothy Williamson - 2003 - Philosophical Perspectives 17 (1):415–465.
    On reading the last sentence, did you interpret me as saying falsely that everything — everything in the entire universe — was packed into my carry-on baggage? Probably not. In ordinary language, ‘everything’ and other quantifiers (‘something’, ‘nothing’, ‘every dog’, ...) often carry a tacit restriction to a domain of contextually relevant objects, such as the things that I need to take with me on my journey. Thus a sentence of the form ‘Everything Fs’ is true as uttered in a (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • (1 other version)Could extended objects be made out of simple parts? An argument for "atomless gunk".Dean W. Zimmerman - 1996 - Philosophy and Phenomenological Research 56 (1):1-29.
    Let us say that an extended object is “composed wholly of simples” just in case it is an aggregate of absolutely unextended parts spread throughout an extended region—that is, just in case there is a set S such that: every member is a point-sized part of the object, and for every x, x is part of the object if and only if it has a part in common with some member of S. Could a truly extended substance be composed entirely (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • (1 other version)To be is to be a value of a variable (or to be some values of some variables).George Boolos - 1984 - Journal of Philosophy 81 (8):430-449.
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Topics in the Philosophy of Possible Worlds.Daniel Patrick Nolan - 2002 - New York: Routledge.
    This book discusses a range of important issues in current philosophical work on the nature of possible worlds. Areas investigated include the theories of the nature of possible worlds, general questions about metaphysical analysis and questions about the direction of dependence between what is necessary or possible and what could be.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Iteration Again.George Boolos - 1989 - Philosophical Topics 17 (2):5-21.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Logic, Logic, and Logic.George Boolos - 1998 - Cambridge, Mass: Harvard University Press. Edited by Richard C. Jeffrey.
    This collection, nearly all chosen by Boolos himself shortly before his death, includes thirty papers on set theory, second-order logic, and plural quantifiers; ...
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • E pluribus unum: Plural logic and set theory.John P. Burgess - 2004 - Philosophia Mathematica 12 (3):193-221.
    A new axiomatization of set theory, to be called Bernays-Boolos set theory, is introduced. Its background logic is the plural logic of Boolos, and its only positive set-theoretic existence axiom is a reflection principle of Bernays. It is a very simple system of axioms sufficient to obtain the usual axioms of ZFC, plus some large cardinals, and to reduce every question of plural logic to a question of set theory.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Modal Realism with Overlap.Kris McDaniel - 2004 - Australasian Journal of Philosophy 82 (1):137-152.
    In this paper, I formulate, elucidate, and defend a version of modal realism with overlap, the view that objects are literally present at more than one possible world. The version that I defend has several interesting features: (i) it is committed to an ontological distinction between regions of spacetime and material objects; (ii) it is committed to compositional pluralism, which is the doctrine that there is more than one fundamental part-whole relation; and (iii) it is the modal analogue of endurantism, (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Plural quantification and classes.Gabriel Uzquiano - 2003 - Philosophia Mathematica 11 (1):67-81.
    When viewed as the most comprehensive theory of collections, set theory leaves no room for classes. But the vocabulary of classes, it is argued, provides us with compact and, sometimes, irreplaceable formulations of largecardinal hypotheses that are prominent in much very important and very interesting work in set theory. Fortunately, George Boolos has persuasively argued that plural quantification over the universe of all sets need not commit us to classes. This paper suggests that we retain the vocabulary of classes, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Armstrong on classes as states of affairs.Gideon Rosen - 1995 - Australasian Journal of Philosophy 73 (4):613 – 625.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (2 other versions)Contributions to the Founding of the Theory of Transfinite Numbers.Cassius J. Keyser - 1916 - The Monist 26:638.
    Download  
     
    Export citation  
     
    Bookmark   23 citations