Switch to: References

Add citations

You must login to add citations.
  1. Make It So: Imperatival Foundations for Mathematics.Neil Barton, Ethan Russo & Chris Scambler - manuscript
    This article articulates and assesses an imperatival approach to the foundations of mathematics. The core idea for the program is that mathematical domains of interest can fruitfully be viewed as the outputs of construction procedures. We apply this idea to provide a novel formalisation of arithmetic and set theory in terms of such procedures, and discuss the significance of this perspective for the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of Class-Theoretic Potentialism.Neil Barton & Kameryn J. Williams - 2024 - Review of Symbolic Logic 17 (1):272-304.
    We explain and explore class-theoretic potentialism—the view that one can always individuate more classes over a set-theoretic universe. We examine some motivations for class-theoretic potentialism, before proving some results concerning the relevant potentialist systems (in particular exhibiting failures of the $\mathsf {.2}$ and $\mathsf {.3}$ axioms). We then discuss the significance of these results for the different kinds of class-theoretic potentialists.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Universism and extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Antireductionism and Ordinals.Beau Madison Mount - 2019 - Philosophia Mathematica 27 (1):105-124.
    I develop a novel argument against the claim that ordinals are sets. In contrast to Benacerraf’s antireductionist argument, I make no use of covert epistemic assumptions. Instead, my argument uses considerations of ontological dependence. I draw on the datum that sets depend immediately and asymmetrically on their elements and argue that this datum is incompatible with reductionism, given plausible assumptions about the dependence profile of ordinals. In addition, I show that a structurally similar argument can be made against the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Against the iterative conception of set.Edward Ferrier - 2019 - Philosophical Studies 176 (10):2681-2703.
    According to the iterative conception of set, each set is a collection of sets formed prior to it. The notion of priority here plays an essential role in explanations of why contradiction-inducing sets, such as the Russell set, do not exist. Consequently, these explanations are successful only to the extent that a satisfactory priority relation is made out. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Structuralism and Reflection.Sam Roberts - 2019 - Review of Symbolic Logic 12 (4):823-860.
    Modal structuralism promises an interpretation of set theory that avoids commitment to abstracta. This article investigates its underlying assumptions. In the first part, I start by highlighting some shortcomings of the standard axiomatisation of modal structuralism, and propose a new axiomatisation I call MSST (for Modal Structural Set Theory). The main theorem is that MSST interprets exactly Zermelo set theory plus the claim that every set is in some inaccessible rank of the cumulative hierarchy. In the second part of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Modal Account of Propositions.Andy Demfree Yu - 2017 - Dialectica 71 (4):463-488.
    In this paper, I motivate a modal account of propositions on the basis of an iterative conception of propositions. As an application, I suggest that the account provides a satisfying solution to the Russell-Myhill paradox. The account is in the spirit of recently developed modal accounts of sets motivated on the basis of the iterative conception of sets.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstracta.Gonçalo Santos - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    A noção de objecto abstracto desempenha um papel central em diferentes debates filosóficos contemporâneos, da metafísica à estética, passando pela filosofia da linguagem. A sua origem está contudo relacionada com a filosofia da matemática e em particular, com o trabalho de Frege nos fundamentos da aritmética. O nosso primeiro objectivo será assim o de explicar o contributo desta noção para o entendimento Fregeano da realidade matemática. Veremos também que, em virtude de certas dificuldades inerentes ao projeto Fregeano, a dada altura (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Russell Should Have Said to Burali–Forti.Salvatore Florio & Graham Leach-Krouse - 2017 - Review of Symbolic Logic 10 (4):682-718.
    The paradox that appears under Burali-Forti’s name in many textbooks of set theory is a clever piece of reasoning leading to an unproblematic theorem. The theorem asserts that the ordinals do not form a set. For such a set would be—absurdly—an ordinal greater than any ordinal in the set of all ordinals. In this article, we argue that the paradox of Burali-Forti is first and foremost a problem about concept formation by abstraction, not about sets. We contend, furthermore, that some (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Price of Universality.Gabriel Uzquiano - 2006 - Philosophical Studies 129 (1):137-169.
    I present a puzzle for absolutely unrestricted quantification. One important advantage of absolutely unrestricted quantification is that it allows us to entertain perfectly general theories. Whereas most of our theories restrict attention to one or another parcel of reality, other theories are genuinely comprehensive taking absolutely all objects into their domain. The puzzle arises when we notice that absolutely unrestricted theories sometimes impose incompatible constraints on the size of the universe.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • When Do Some Things Form a Set?Simon Hewitt - 2015 - Philosophia Mathematica 23 (3):311-337.
    This paper raises the question under what circumstances a plurality forms a set, parallel to the Special Composition Question for mereology. The range of answers that have been proposed in the literature are surveyed and criticised. I argue that there is good reason to reject both the view that pluralities never form sets and the view that pluralities always form sets. Instead, we need to affirm restricted set formation. Casting doubt on the availability of any informative principle which will settle (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A neglected resolution of Russell’s paradox of propositions.Gabriel Uzquiano - 2015 - Review of Symbolic Logic 8 (2):328-344.
    Bertrand Russell offered an influential paradox of propositions in Appendix B of The Principles of Mathematics, but there is little agreement as to what to conclude from it. We suggest that Russell's paradox is best regarded as a limitative result on propositional granularity. Some propositions are, on pain of contradiction, unable to discriminate between classes with different members: whatever they predicate of one, they predicate of the other. When accepted, this remarkable fact should cast some doubt upon some of the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)On the Carroll-Chen Model (Long Unpublished Version on arxiv).Christopher Gregory Weaver - manuscript
    I argue that the Carroll-Chen cosmogonic model does not provide a plausible scientific explanation of our universe's initial low-entropy state.
    Download  
     
    Export citation  
     
    Bookmark  
  • From states of affairs to a necessary being.Joshua Rasmussen - 2010 - Philosophical Studies 148 (2):183 - 200.
    I develop new paths to the existence of a concrete necessary being. These paths assume a metaphysical framework in which there are abstract states of affairs that can obtain or fail to obtain. One path begins with the following causal principle: necessarily, any contingent concrete object possibly has a cause. I mark out steps from that principle to a more complex causal principle and from there to the existence of a concrete necessary being. I offer a couple alternative causal principles (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Strong Reflection Principle.Sam Roberts - 2017 - Review of Symbolic Logic 10 (4):651-662.
    This article introduces a new reflection principle. It is based on the idea that whatever is true in all entities of some kind is also true in a set-sized collection of them. Unlike standard reflection principles, it does not re-interpret parameters or predicates. This allows it to be both consistent in all higher-order languages and remarkably strong. For example, I show that in the language of second-order set theory with predicates for a satisfaction relation, it is consistent relative to the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • E pluribus unum: Plural logic and set theory.John P. Burgess - 2004 - Philosophia Mathematica 12 (3):193-221.
    A new axiomatization of set theory, to be called Bernays-Boolos set theory, is introduced. Its background logic is the plural logic of Boolos, and its only positive set-theoretic existence axiom is a reflection principle of Bernays. It is a very simple system of axioms sufficient to obtain the usual axioms of ZFC, plus some large cardinals, and to reduce every question of plural logic to a question of set theory.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)Descriptions: An Annotated Bibliography.Berit Brogaard - 2010 - Oxford Annotated Bibliographies Online.
    Descriptions are phrases of the form ‘an F’, ‘the F’, ‘Fs’, ‘the Fs’ and NP's F (e.g. ‘John's mother’). They can be indefinite (e.g., ‘an F’ and ‘Fs’), definite (e.g. ‘the F’ and ‘the Fs’), singular (e.g., ‘an F’, ‘the F’) or plural (e.g., ‘the Fs’, ‘Fs’). In English plural indefinite descriptions lack an article and are for that reason also known as ‘bare plurals’. How to account for the semantics and pragmatics of descriptions has been one of the central (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Groundedness Approach to Class Theory.Jönne Kriener - 2014 - Inquiry: An Interdisciplinary Journal of Philosophy 57 (2):244-273.
    Kripke showed how to restrict Tarski’s schema to grounded sentences. I examine the prospects for an analogous approach to the paradoxes of naive class comprehension. I present new methods to obtain theories of grounded classes and test them against antecedently motivated desiderata. My findings cast doubt on whether a theory of grounded classes can accommodate both the extensionality of classes and allow for class definition in terms of identity.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Plural quantification.Ø Linnebo - 2008 - Stanford Encyclopedia of Philosophy.
    Ordinary English contains different forms of quantification over objects. In addition to the usual singular quantification, as in 'There is an apple on the table', there is plural quantification, as in 'There are some apples on the table'. Ever since Frege, formal logic has favored the two singular quantifiers ∀x and ∃x over their plural counterparts ∀xx and ∃xx (to be read as for any things xx and there are some things xx). But in recent decades it has been argued (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Why is the universe of sets not a set?Zeynep Soysal - 2017 - Synthese 197 (2):575-597.
    According to the iterative conception of sets, standardly formalized by ZFC, there is no set of all sets. But why is there no set of all sets? A simple-minded, though unpopular, “minimal” explanation for why there is no set of all sets is that the supposition that there is contradicts some axioms of ZFC. In this paper, I first explain the core complaint against the minimal explanation, and then argue against the two main alternative answers to the guiding question. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Unrestricted Quantification.Salvatore Florio - 2014 - Philosophy Compass 9 (7):441-454.
    Semantic interpretations of both natural and formal languages are usually taken to involve the specification of a domain of entities with respect to which the sentences of the language are to be evaluated. A question that has received much attention of late is whether there is unrestricted quantification, quantification over a domain comprising absolutely everything there is. Is there a discourse or inquiry that has absolute generality? After framing the debate, this article provides an overview of the main arguments for (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Varieties of Indefinite Extensibility.Gabriel Uzquiano - 2015 - Notre Dame Journal of Formal Logic 56 (1):147-166.
    We look at recent accounts of the indefinite extensibility of the concept set and compare them with a certain linguistic model of indefinite extensibility. We suggest that the linguistic model has much to recommend over alternative accounts of indefinite extensibility, and we defend it against three prima facie objections.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell idea (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Salvatore Florio* and Øystein Linnebo**. The Many and the One. A Philosophical Study of Plural Logic.Francesca Boccuni - 2022 - Philosophia Mathematica 30 (3):369-381.
    Several natural languages such as English contain prima facie different kinds of referential and quantificational expressions. In particular, natural languages.
    Download  
     
    Export citation  
     
    Bookmark  
  • In defence of Higher-Level Plural Logic: drawing conclusions from natural language.Berta Grimau - 2019 - Synthese 198 (6):5253-5280.
    Plural Logic is an extension of First-Order Logic which has, as well as singular terms and quantifiers, their plural counterparts. Analogously, Higher-Level Plural Logic is an extension of Plural Logic which has, as well as plural terms and quantifiers, higher-level plural ones. Roughly speaking, higher-level plurals stand to plurals like plurals stand to singulars; they are pluralised plurals. Allegedly, Higher-Level Plural Logic enjoys the expressive power of a simple type theory while committing us to nothing more than the austere ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fragmented Truth.Andy Demfree Yu - 2016 - Dissertation, University of Oxford
    This thesis comprises three main chapters—each comprising one relatively standalone paper. The unifying theme is fragmentalism about truth, which is the view that the predicate “true” either expresses distinct concepts or expresses distinct properties. -/- In Chapter 1, I provide a formal development of alethic pluralism. Pluralism is the view that there are distinct truth properties associated with distinct domains of subject matter, where a truth property satisfies certain truth-characterizing principles. On behalf of pluralists, I propose an account of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal Expansionism.Alexander Roberts - 2019 - Journal of Philosophical Logic 48 (6):1145-1170.
    There are various well-known paradoxes of modal recombination. This paper offers a solution to a variety of such paradoxes in the form of a new conception of metaphysical modality. On the proposed conception, metaphysical modality exhibits a type of indefinite extensibility. Indeed, for any objective modality there will always be some further, broader objective modality; in other terms, modal space will always be open to expansion.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mathematical determinacy and the transferability of aboutness.Stephen Pollard - 2007 - Synthese 159 (1):83-98.
    Competent speakers of natural languages can borrow reference from one another. You can arrange for your utterances of ‘Kirksville’ to refer to the same thing as my utterances of ‘Kirksville’. We can then talk about the same thing when we discuss Kirksville. In cases like this, you borrow “ aboutness ” from me by borrowing reference. Now suppose I wish to initiate a line of reasoning applicable to any prime number. I might signal my intention by saying, “Let p be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From plurals to superplurals: in defence of higher-level plural logic.Berta Grimau Roca - 2018 - Dissertation, University of Glasgow
    Plural Logic is an extension of First-Order Logic with plural terms and quantifiers. When its plural terms are interpreted as denoting more than one object at once, Plural Logic is usually taken to be ontologically innocent: plural quantifiers do not require a domain of their own, but range plurally over the first-order domain of quantification. Given that Plural Logic is equi-interpretable with Monadic Second-Order Logic, it gives us its expressive power at the low ontological cost of a first-order language. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Universism and Extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favor of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation