Switch to: References

Citations of:

Set Theory and its Philosophy: A Critical Introduction

Oxford, England: Oxford University Press (2004)

Add citations

You must login to add citations.
  1. Indefinite Divisibility.Jeffrey Sanford Russell - 2016 - Inquiry: An Interdisciplinary Journal of Philosophy 59 (3):239-263.
    Some hold that the lesson of Russell’s paradox and its relatives is that mathematical reality does not form a ‘definite totality’ but rather is ‘indefinitely extensible’. There can always be more sets than there ever are. I argue that certain contact puzzles are analogous to Russell’s paradox this way: they similarly motivate a vision of physical reality as iteratively generated. In this picture, the divisions of the continuum into smaller parts are ‘potential’ rather than ‘actual’. Besides the intrinsic interest of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Trivialist's Travails.Thomas Donaldson - 2014 - Philosophia Mathematica 22 (3):380-401.
    This paper is an exposition and evaluation of the Agustín Rayo's views about the epistemology and metaphysics of mathematics, as they are presented in his book The Construction of Logical Space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Platitudes in mathematics.Thomas Donaldson - 2015 - Synthese 192 (6):1799-1820.
    The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Graph Conception of Set.Luca Incurvati - 2014 - Journal of Philosophical Logic 43 (1):181-208.
    The non-well-founded set theories described by Aczel (1988) have received attention from category theorists and computer scientists, but have been largely ignored by philosophers. At the root of this neglect might lie the impression that these theories do not embody a conception of set, but are rather of mere technical interest. This paper attempts to dispel this impression. I present a conception of set which may be taken as lying behind a non-well-founded set theory. I argue that the axiom AFA (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What is Wrong with Cantor's Diagonal Argument?R. T. Brady & P. A. Rush - 2008 - Logique Et Analyse 51 (1):185-219..
    We first consider the entailment logic MC, based on meaning containment, which contains neither the Law of Excluded Middle (LEM) nor the Disjunctive Syllogism (DS). We then argue that the DS may be assumed at least on a similar basis as the assumption of the LEM, which is then justified over a finite domain or for a recursive property over an infinite domain. In the latter case, use is made of Mathematical Induction. We then show that an instance of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Chemistry, a lingua philosophica.Guillermo Restrepo & José L. Villaveces - 2011 - Foundations of Chemistry 13 (3):233-249.
    We analyze the connections of Lavoisier system of nomenclature with Leibniz’s philosophy, pointing out to the resemblance between what we call Leibnizian and Lavoisian programs. We argue that Lavoisier’s contribution to chemistry is something more subtle, in so doing we show that the system of nomenclature leads to an algebraic system of chemical sets. We show how Döbereiner and Mendeleev were able to develop this algebraic system and to find new interesting properties for it. We pointed out the resemblances between (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Metamathematics of Putnam’s Model-Theoretic Arguments.Tim Button - 2011 - Erkenntnis 74 (3):321-349.
    Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted models. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I examine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to metamathematical challenges.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • How to be a minimalist about sets.Luca Incurvati - 2012 - Philosophical Studies 159 (1):69-87.
    According to the iterative conception of set, sets can be arranged in a cumulative hierarchy divided into levels. But why should we think this to be the case? The standard answer in the philosophical literature is that sets are somehow constituted by their members. In the first part of the paper, I present a number of problems for this answer, paying special attention to the view that sets are metaphysically dependent upon their members. In the second part of the paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The Nature of Appearance in Kant’s Transcendentalism: A Seman- tico-Cognitive Analysis.Sergey L. Katrechko - 2018 - Kantian Journal 37 (3):41-55.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical aspects of the periodic law.Guillermo Restrepo & Leonardo Pachón - 2006 - Foundations of Chemistry 9 (2):189-214.
    We review different studies of the Periodic Law and the set of chemical elements from a mathematical point of view. This discussion covers the first attempts made in the 19th century up to the present day. Mathematics employed to study the periodic system includes number theory, information theory, order theory, set theory and topology. Each theory used shows that it is possible to provide the Periodic Law with a mathematical structure. We also show that it is possible to study the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Boolos on the justification of set theory.Alexander Paseau - 2007 - Philosophia Mathematica 15 (1):30-53.
    George Boolos has argued that the iterative conception of set justifies most, but not all, the ZFC axioms, and that a second conception of set, the Frege-von Neumann conception (FN), justifies the remaining axioms. This article challenges Boolos's claim that FN does better than the iterative conception at justifying the axioms in question.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Guía para una primera lectura de Los fundamentos de la aritmética de Gottlob Frege.Francisco Manuel Sauri-Mercader - manuscript
    El presente texto es una guía para una primera lectura de los Los fundamentos de la aritmética de Gottlob Frege para estudiantes del grado de Filosofía. -/- No pretende hacer ninguna aportación a la investigación sobre Frege sino ofrecer los instrumentos para hacer una primera lectura mediante la recopilación y la ordenación de los textos relevantes de los estudiosos de Frege, especialmente de la literatura en inglés. En la mayor parte de los casos, las referencias a otros autores (Autorfecha) preceden (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 32 Naming God’s Essence: Ineffability, Analogy and Set Theory.Claudio Ternullo - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 697-718.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Cantor, Choice, and Paradox.Nicholas DiBella - 2024 - The Philosophical Review 133 (3):223-263.
    I propose a revision of Cantor’s account of set size that understands comparisons of set size fundamentally in terms of surjections rather than injections. This revised account is equivalent to Cantor's account if the Axiom of Choice is true, but its consequences differ from those of Cantor’s if the Axiom of Choice is false. I argue that the revised account is an intuitive generalization of Cantor’s account, blocks paradoxes—most notably, that a set can be partitioned into a set that is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Counterparts, Determinism, and the Hole Argument.Franciszek Cudek - forthcoming - British Journal for the Philosophy of Science.
    The hole argument concludes that substantivalism about spacetime entails the radical indeterminism of the general theory of relativity (GR). In this paper, I amend and defend a response to the hole argument first proposed by Butterfield (1989) that relies on the idea of counterpart substantivalism. My amendment clarifies and develops the metaphysical presuppositions of counterpart substantivalism and its relation to various definitions of determinism. My defence consists of two claims. First, contra Weatherall (2018) and others: the hole argument is not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Binding and axiomatics: Deleuze and Guattari’s transcendental account of capitalism.Henry Somers-Hall - 2023 - Continental Philosophy Review 56 (4):619-638.
    The aim of this paper is to develop a consistent reading of Deleuze and Guattari’s account of capitalism by taking seriously their use of Kant’s philosophy in formulating it. In Sect. 1, I will set out the two different roots of the term axiomatic in Deleuze and Guattari’s thought. The first of these is the axiomatic approach to formalising fields of mathematics, and the second the Kantian account of the indeterminate relationship between the transcendental unity of apperception and the transcendental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The iterative solution to paradoxes for propositions.Bruno Whittle - 2022 - Philosophical Studies 180 (5-6):1623-1650.
    This paper argues that we should solve paradoxes for propositions (such as the Russell–Myhill paradox) in essentially the same way that we solve Russellian paradoxes for sets. That is, the standard, iterative approach to sets is extended to include properties, and then the resulting hierarchy of sets and properties is used to construct propositions. Propositions on this account are structured in the sense of mirroring the sentences that express them, and they would seem to serve the needs of philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematics and Metaphilosophy.Justin Clarke-Doane - 2022 - Cambridge: Cambridge University Press.
    This book discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the problem of explaining the (defeasible) justification of our mathematical beliefs (‘the justificatory challenge’), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the problem of explaining their reliability (‘the reliability challenge’), arises to the extent that we could have easily had different beliefs. The book shows that mathematical facts are not, in general, empirically accessible, contra Quine, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Against Cumulative Type Theory.Tim Button & Robert Trueman - 2022 - Review of Symbolic Logic 15 (4):907-49.
    Standard Type Theory, STT, tells us that b^n(a^m) is well-formed iff n=m+1. However, Linnebo and Rayo have advocated the use of Cumulative Type Theory, CTT, has more relaxed type-restrictions: according to CTT, b^β(a^α) is well-formed iff β > α. In this paper, we set ourselves against CTT. We begin our case by arguing against Linnebo and Rayo’s claim that CTT sheds new philosophical light on set theory. We then argue that, while CTT ’s type-restrictions are unjustifiable, the type-restrictions imposed by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The limits of classical mereology: Mixed fusions and the failures of mereological hybridism.Joshua Kelleher - 2020 - Dissertation, The University of Queensland
    In this thesis I argue against unrestricted mereological hybridism, the view that there are absolutely no constraints on wholes having parts from many different logical or ontological categories, an exemplar of which I take to be ‘mixed fusions’. These are composite entities which have parts from at least two different categories – the membered (as in classes) and the non-membered (as in individuals). As a result, mixed fusions can also be understood to represent a variety of cross-category summation such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Observation about Truth.David Kashtan - 2017 - Dissertation, University of Jerusalem
    Tarski's analysis of the concept of truth gives rise to a hierarchy of languages. Does this fragment the concept all the way to philosophical unacceptability? I argue it doesn't, drawing on a modification of Kaplan's theory of indexicals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-Archimedean Preferences Over Countable Lotteries.Jeffrey Sanford Russell - 2020 - Journal of Mathematical Economics 88 (May 2020):180-186.
    We prove a representation theorem for preference relations over countably infinite lotteries that satisfy a generalized form of the Independence axiom, without assuming Continuity. The representing space consists of lexicographically ordered transfinite sequences of bounded real numbers. This result is generalized to preference orders on abstract superconvex spaces.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert on Consistency as a Guide to Mathematical Reality.Fiona T. Doherty - 2017 - Logique Et Analyse 237:107-128.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reason, causation and compatibility with the phenomena.Basil Evangelidis - 2019 - Wilmington, Delaware, USA: Vernon Press.
    'Reason, Causation and Compatibility with the Phenomena' strives to give answers to the philosophical problem of the interplay between realism, explanation and experience. This book is a compilation of essays that recollect significant conceptions of rival terms such as determinism and freedom, reason and appearance, power and knowledge. This title discusses the progress made in epistemology and natural philosophy, especially the steps that led from the ancient theory of atomism to the modern quantum theory, and from mathematization to analytic philosophy. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Qual a motivação para se defender uma teoria causal da memória?César Schirmer Dos Santos - 2018 - In Juliano Santos do Carmo & Rogério F. Saucedo Corrêa (eds.), Linguagem e cognição. NEPFil. pp. 63-89.
    Este texto tem como objetivo apresentar a principal motivação filosófica para se defender uma teoria causal da memória, que é explicar como pode um evento que se deu no passado estar relacionado a uma experiência mnêmica que se dá no presente. Para tanto, iniciaremos apresentando a noção de memória de maneira informal e geral, para depois apresentar elementos mais detalhados. Finalizamos apresentando uma teoria causal da memória que se beneficia da noção de veritação (truthmaking).
    Download  
     
    Export citation  
     
    Bookmark  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Bi-Modal Naive Set Theory.John Wigglesworth - 2018 - Australasian Journal of Logic 15 (2):139-150.
    This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members. A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators. We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity. We also show that the theory is consistent by providing an S5 Kripke model. The paper concludes with some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against the iterative conception of set.Edward Ferrier - 2019 - Philosophical Studies 176 (10):2681-2703.
    According to the iterative conception of set, each set is a collection of sets formed prior to it. The notion of priority here plays an essential role in explanations of why contradiction-inducing sets, such as the Russell set, do not exist. Consequently, these explanations are successful only to the extent that a satisfactory priority relation is made out. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontological Commitment.Daniel Durante Pereira Alves - 2018 - AL-Mukhatabat 1 (27):177-223.
    Disagreement over what exists is so fundamental that it tends to hinder or even to block dialogue among disputants. The various controversies between believers and atheists, or realists and nominalists, are only two kinds of examples. Interested in contributing to the intelligibility of the debate on ontology, in 1939 Willard van Orman Quine began a series of works which introduces the notion of ontological commitment and proposes an allegedly objective criterion to identify the exact conditions under which a theoretical discourse (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Deflationary Theory of Ontological Dependence.David Mark Kovacs - 2018 - Philosophical Quarterly 68 (272):481-502.
    When an entity ontologically depends on another entity, the former ‘presupposes’ or ‘requires’ the latter in some metaphysical sense. This paper defends a novel view, Dependence Deflationism, according to which ontological dependence is what I call an aggregative cluster concept: a concept which can be understood, but not fully analysed, as a ‘weighted total’ of constructive and modal relations. The view has several benefits: it accounts for clear cases of ontological dependence as well as the source of disagreement in controversial (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modeling Mystery.William Wood - 2016 - Scientia et Fides 4 (1):39-59.
    The practice of model-building is very common in analytic philosophical theology. Yet many other theologians worry that any attempt to model God must be hubristic and idolatrous. A better understanding of scientific modeling can set the stage for a more fruitful engagement between analytic theologians and their critics. I first present an account of scientific modeling that draws on recent work in the philosophy of science. I then apply that account to a prominent analytic model of the trinity, Michael Rea (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Composition and Identities.Manuel Lechthaler - 2017 - Dissertation, University of Otago
    Composition as Identity is the view that an object is identical to its parts taken collectively. I elaborate and defend a theory based on this idea: composition is a kind of identity. Since this claim is best presented within a plural logic, I develop a formal system of plural logic. The principles of this system differ from the standard views on plural logic because one of my central claims is that identity is a relation which comes in a variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Modal Objectivity.Justin Clarke-Doane - 2017 - Noûs 53 (2):266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Modal Objectivity.Clarke-Doane Justin - 2017 - Noûs 53:266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Objectivity and reliability.Justin Clarke-Doane - 2017 - Canadian Journal of Philosophy 47 (6):841-855.
    Scanlon’s Being Realistic about Reasons (BRR) is a beautiful book – sleek, sophisticated, and programmatic. One of its key aims is to demystify knowledge of normative and mathematical truths. In this article, I develop an epistemological problem that Scanlon fails to explicitly address. I argue that his “metaphysical pluralism” can be understood as a response to that problem. However, it resolves the problem only if it undercuts the objectivity of normative and mathematical inquiry.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark