Switch to: Citations

Add references

You must login to add references.
  1. Pi on Earth, or Mathematics in the Real World.Bart Van Kerkhove & Jean Paul Van Bendegem - 2008 - Erkenntnis 68 (3):421-435.
    We explore aspects of an experimental approach to mathematical proof, most notably number crunching, or the verification of subsequent particular cases of universal propositions. Since the rise of the computer age, this technique has indeed conquered practice, although it implies the abandonment of the ideal of absolute certainty. It seems that also in mathematical research, the qualitative criterion of effectiveness, i.e. to reach one’s goals, gets increasingly balanced against the quantitative one of efficiency, i.e. to minimize one’s means/ends ratio. Our (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mathematical Thought from Ancient to Modern Times.M. Kline - 1978 - British Journal for the Philosophy of Science 29 (1):68-87.
    Download  
     
    Export citation  
     
    Bookmark   161 citations  
  • Managing Informal Mathematical Knowledge: Techniques from Informal Logic.Andrew Aberdein - 2006 - Lecture Notes in Artificial Intelligence 4108:208--221.
    Much work in MKM depends on the application of formal logic to mathematics. However, much mathematical knowledge is informal. Luckily, formal logic only represents one tradition in logic, specifically the modeling of inference in terms of logical form. Many inferences cannot be captured in this manner. The study of such inferences is still within the domain of logic, and is sometimes called informal logic. This paper explores some of the benefits informal logic may have for the management of informal mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The polynomial and linear hierarchies in models where the weak pigeonhole principle fails.Leszek Aleksander Kołodziejczyk & Neil Thapen - 2008 - Journal of Symbolic Logic 73 (2):578-592.
    We show, under the assumption that factoring is hard, that a model of PV exists in which the polynomial hierarchy does not collapse to the linear hierarchy; that a model of S21 exists in which NP is not in the second level of the linear hierarchy; and that a model of S21 exists in which the polynomial hierarchy collapses to the linear hierarchy. Our methods are model-theoretic. We use the assumption about factoring to get a model in which the weak (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History.Reviel Netz - 1999 - Cambridge and New York: Cambridge University Press.
    An examination of the emergence of the phenomenon of deductive argument in classical Greek mathematics.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • The informal logic of mathematical proof.Andrew Aberdein - 2006 - In Reuben Hersh (ed.), 18 Unconventional Essays on the Nature of Mathematics. Springer. pp. 56-70.
    Informal logic is a method of argument analysis which is complementary to that of formal logic, providing for the pragmatic treatment of features of argumentation which cannot be reduced to logical form. The central claim of this paper is that a more nuanced understanding of mathematical proof and discovery may be achieved by paying attention to the aspects of mathematical argumentation which can be captured by informal, rather than formal, logic. Two accounts of argumentation are considered: the pioneering work of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Mathematics and Plausible Reasoning: Induction and analogy in mathematics.George Pólya - 1954 - Princeton, NJ, USA: Princeton University Press.
    Here the author of How to Solve It explains how to become a "good guesser." Marked by G. Polya's simple, energetic prose and use of clever examples from a wide range of human activities, this two-volume work explores techniques of guessing, inductive reasoning, and reasoning by analogy, and the role they play in the most rigorous of deductive disciplines.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • The Shaping of Deduction in Greek Mathematics a Study in Cognitive History.Jenz Høyrup - 1999
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Analysis and synthesis in mathematics from the perspective of Charles S. Peirce's philosophy.Michael Otte - forthcoming - Boston Studies in the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Mathematics and plausible reasoning.George Pólya - 1968 - Princeton, N.J.,: Princeton University Press.
    2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Analysis and Synthesis in Mathematics,.Michael Otte & Marco Panza (eds.) - 1997 - Kluwer Academic Publishers.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mathematics and fiction I: Identification.Robert Sd Thomas - 2000 - Logique Et Analyse 43:301-340.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematics and fiction II: Analogy.Robert Thomas - 2002 - Logique Et Analyse 45:185-228.
    The object of this paper is to study the analogy, drawn both positively and negatively, between mathematics and fiction. The analogy is more subtle and interesting than fictionalism, which was discussed in part I. Because analogy is not common coin among philosophers, this particular analogy has been discussed or mentioned for the most part just in terms of specific similarities that writers have noticed and thought worth mentioning without much attention's being paid to the larger picture. I intend with this (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Shaping of Deduction in Greek Mathematics: A Study in Coginitive History. [REVIEW]Jenz Høyrup - 2005 - Studia Logica 80 (1):143-147.
    Download  
     
    Export citation  
     
    Bookmark   39 citations