Switch to: Citations

Add references

You must login to add references.
  1. The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Bounded forcing axioms as principles of generic absoluteness.Joan Bagaria - 2000 - Archive for Mathematical Logic 39 (6):393-401.
    We show that Bounded Forcing Axioms (for instance, Martin's Axiom, the Bounded Proper Forcing Axiom, or the Bounded Martin's Maximum) are equivalent to principles of generic absoluteness, that is, they assert that if a $\Sigma_1$ sentence of the language of set theory with parameters of small transitive size is forceable, then it is true. We also show that Bounded Forcing Axioms imply a strong form of generic absoluteness for projective sentences, namely, if a $\Sigma^1_3$ sentence with parameters is forceable, then (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)The iterative conception of set.George Boolos - 1971 - Journal of Philosophy 68 (8):215-231.
    Download  
     
    Export citation  
     
    Bookmark   202 citations  
  • Incompatible bounded category forcing axioms.David Asperó & Matteo Viale - 2022 - Journal of Mathematical Logic 22 (2).
    Journal of Mathematical Logic, Volume 22, Issue 02, August 2022. We introduce bounded category forcing axioms for well-behaved classes [math]. These are strong forms of bounded forcing axioms which completely decide the theory of some initial segment of the universe [math] modulo forcing in [math], for some cardinal [math] naturally associated to [math]. These axioms naturally extend projective absoluteness for arbitrary set-forcing — in this situation [math] — to classes [math] with [math]. Unlike projective absoluteness, these higher bounded category forcing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Universism and extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Forms of Justification in Set Theory.Neil Barton, Claudio Ternullo & Giorgio Venturi - 2020 - Australasian Journal of Logic 17 (4):158-200.
    In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated nor (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Absoluteness via resurrection.Giorgio Audrito & Matteo Viale - 2017 - Journal of Mathematical Logic 17 (2):1750005.
    The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms for a class of forcings Γ and a given ordinal α), and show that RAω implies generic absoluteness for the first-order theory of Hγ+ with respect to forcings in Γ preserving the axiom, where γ = γΓ is a cardinal which depends on Γ. We also prove that the consistency strength of these axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2017 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Sur le platonisme dans les mathématiques.Paul Bernays - 1935 - L’Enseignement Mathematique 34:52--69.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Second order arithmetic as the model companion of set theory.Giorgio Venturi & Matteo Viale - 2023 - Archive for Mathematical Logic 62 (1):29-53.
    This is an introductory paper to a series of results linking generic absoluteness results for second and third order number theory to the model theoretic notion of model companionship. Specifically we develop here a general framework linking Woodin’s generic absoluteness results for second order number theory and the theory of universally Baire sets to model companionship and show that (with the required care in details) a $$\Pi _2$$ -property formalized in an appropriate language for second order number theory is forcible (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the question of absolute undecidability.Peter Koellner - 2010 - In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: essays for his centennial. Ithaca, NY: Association for Symbolic Logic. pp. 153-188.
    The paper begins with an examination of Gödel's views on absolute undecidability and related topics in set theory. These views are sharpened and assessed in light of recent developments. It is argued that a convincing case can be made for axioms that settle many of the questions undecided by the standard axioms and that in a precise sense the program for large cardinals is a complete success “below” CH. It is also argued that there are reasonable scenarios for settling CH (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • A simple maximality principle.Joel Hamkins - 2003 - Journal of Symbolic Logic 68 (2):527-550.
    In this paper, following an idea of Christophe Chalons. I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence varphi holding in some forcing extension $V^P$ and all subsequent extensions $V^{P\ast Q}$ holds already in V. It follows, in fact, that such sentences must also hold in all forcing extensions of V. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\lozenge \square \varphi) \Rightarrow \square \varphi$ , and is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   329 citations  
  • Infinite Forcing and the Generic Multiverse.Giorgio Venturi - 2020 - Studia Logica 108 (2):277-290.
    In this article we present a technique for selecting models of set theory that are complete in a model-theoretic sense. Specifically, we will apply Robinson infinite forcing to the collections of models of ZFC obtained by Cohen forcing. This technique will be used to suggest a unified perspective on generic absoluteness principles.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • XIII*—Two Problems with Tarski's Theory of Consequence.Vann McGee - 1992 - Proceedings of the Aristotelian Society 92 (1):273-292.
    Vann McGee; XIII*—Two Problems with Tarski's Theory of Consequence, Proceedings of the Aristotelian Society, Volume 92, Issue 1, 1 June 1992, Pages 273–292, htt.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • What is the theory without power set?Victoria Gitman, Joel David Hamkins & Thomas A. Johnstone - 2016 - Mathematical Logic Quarterly 62 (4-5):391-406.
    We show that the theory, consisting of the usual axioms of but with the power set axiom removed—specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well‐ordered—is weaker than commonly supposed and is inadequate to establish several basic facts often desired in its context. For example, there are models of in which ω1 is singular, in which every set of reals is countable, yet ω1 exists, in which there are sets of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Set mapping reflection.Justin Tatch Moore - 2005 - Journal of Mathematical Logic 5 (1):87-97.
    In this note we will discuss a new reflection principle which follows from the Proper Forcing Axiom. The immediate purpose will be to prove that the bounded form of the Proper Forcing Axiom implies both that 2ω = ω2 and that [Formula: see text] satisfies the Axiom of Choice. It will also be demonstrated that this reflection principle implies that □ fails for all regular κ > ω1.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The hyperuniverse program.Tatiana Arrigoni & Sy-David Friedman - 2013 - Bulletin of Symbolic Logic 19 (1):77-96.
    The Hyperuniverse Program is a new approach to set-theoretic truth which is based on justifiable principles and leads to the resolution of many questions independent from ZFC. The purpose of this paper is to present this program, to illustrate its mathematical content and implications, and to discuss its philosophical assumptions.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Martin’s maximum revisited.Matteo Viale - 2016 - Archive for Mathematical Logic 55 (1-2):295-317.
    We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. In particular we show that, in combination with class many Woodin cardinals, the forcing axiom MM++ makes the Π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_2}$$\end{document}-fragment of the theory of Hℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\aleph_2}}$$\end{document} invariant with respect to stationary set preserving forcings that preserve BMM. We argue that this is a promising generalization to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations