Switch to: Citations

Add references

You must login to add references.
  1. On the scheme of induction for bounded arithmetic formulas.A. J. Wilkie & J. B. Paris - 1987 - Annals of Pure and Applied Logic 35 (C):261-302.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Cuts, consistency statements and interpretations.Pavel Pudlák - 1985 - Journal of Symbolic Logic 50 (2):423-441.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Faith & falsity.Albert Visser - 2004 - Annals of Pure and Applied Logic 131 (1-3):103-131.
    A theory T is trustworthy iff, whenever a theory U is interpretable in T, then it is faithfully interpretable. In this paper we give a characterization of trustworthiness. We provide a simple proof of Friedman’s Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Π20.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The unprovability of small inconsistency.Albert Visser - 1993 - Archive for Mathematical Logic 32 (4):275-298.
    We show that a consistent, finitely axiomatized, sequential theory cannot prove its own inconsistency on every definable cut. A corollary is that there are at least three degrees of global interpretability of theories equivalent modulo local interpretability to a consistent, finitely axiomatized, sequential theory U.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Cardinal arithmetic in the style of Baron Von münchhausen.Albert Visser - 2009 - Review of Symbolic Logic 2 (3):570-589.
    In this paper we show how to interpret Robinson’s arithmetic Q and the theory R of Tarski, Mostowski, and Robinson as theories of cardinals in very weak theories of relations over a domain.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On a Question of Krajewski's.Fedor Pakhomov & Albert Visser - 2019 - Journal of Symbolic Logic 84 (1):343-358.
    In this paper, we study finitely axiomatizable conservative extensions of a theoryUin the case whereUis recursively enumerable and not finitely axiomatizable. Stanisław Krajewski posed the question whether there are minimal conservative extensions of this sort. We answer this question negatively.Consider a finite expansion of the signature ofUthat contains at least one predicate symbol of arity ≥ 2. We show that, for any finite extensionαofUin the expanded language that is conservative overU, there is a conservative extensionβofUin the expanded language, such that$\alpha (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hume’s principle, beginnings.Albert Visser - 2011 - Review of Symbolic Logic 4 (1):114-129.
    In this note we derive Robinson???s Arithmetic from Hume???s Principle in the context of very weak theories of classes and relations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Role of Quantifier Alternations in Cut Elimination.Philipp Gerhardy - 2005 - Notre Dame Journal of Formal Logic 46 (2):165-171.
    Extending previous results from work on the complexity of cut elimination for the sequent calculus LK, we discuss the role of quantifier alternations and develop a measure to describe the complexity of cut elimination in terms of quantifier alternations in cut formulas and contractions on such formulas.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Arithmetics of a Theory.Albert Visser - 2015 - Notre Dame Journal of Formal Logic 56 (1):81-119.
    In this paper we study the interpretations of a weak arithmetic, like Buss’s theory $\mathsf{S}^{1}_{2}$, in a given theory $U$. We call these interpretations the arithmetics of $U$. We develop the basics of the structure of the arithmetics of $U$. We study the provability logic of $U$ from the standpoint of the framework of the arithmetics of $U$. Finally, we provide a deeper study of the arithmetics of a finitely axiomatized sequential theory.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sequence encoding without induction.Emil Jeřábek - 2012 - Mathematical Logic Quarterly 58 (3):244-248.
    We show that the universally axiomatized, induction-free theory equation image is a sequential theory in the sense of Pudlák's 5, in contrast to the closely related Robinson's arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Existentially Closed Models in the Framework of Arithmetic.Zofia Adamowicz, Andrés Cordón-Franco & F. Félix Lara-martín - 2016 - Journal of Symbolic Logic 81 (2):774-788.
    We prove that the standard cut is definable in each existentially closed model ofIΔ0+ exp by a (parameter free) П1–formula. This definition is optimal with respect to quantifier complexity and allows us to improve some previously known results on existentially closed models of fragments of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpretability degrees of finitely axiomatized sequential theories.Albert Visser - 2014 - Archive for Mathematical Logic 53 (1-2):23-42.
    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory—like Elementary Arithmetic EA, IΣ1, or the Gödel–Bernays theory of sets and classes GB—have suprema. This partially answers a question posed by Švejdar in his paper (Commentationes Mathematicae Universitatis Carolinae 19:789–813, 1978). The partial solution of Švejdar’s problem follows from a stronger fact: the convexity of the degree structure of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory in the degree (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Satisfaction relations for proper classes: Applications in logic and set theory.Robert A. Van Wesep - 2013 - Journal of Symbolic Logic 78 (2):345-368.
    We develop the theory of partial satisfaction relations for structures that may be proper classes and define a satisfaction predicate ($\models^*$) appropriate to such structures. We indicate the utility of this theory as a framework for the development of the metatheory of first-order predicate logic and set theory, and we use it to prove that for any recursively enumerable extension $\Theta$ of ZF there is a finitely axiomatizable extension $\Theta'$ of GB that is a conservative extension of $\Theta$. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation