Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Interpretability in Robinson's Q.Fernando Ferreira & Gilda Ferreira - 2013 - Bulletin of Symbolic Logic 19 (3):289-317.
    Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is animpassable barrierin the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted inbut also what cannot be so (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Transductions in arithmetic.Albert Visser - 2016 - Annals of Pure and Applied Logic 167 (3):211-234.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Consistency and the theory of truth.Richard Heck - 2015 - Review of Symbolic Logic 8 (3):424-466.
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? Once the question has been properly formulated, the answer turns out to be about as elegant as one could want: Adding a theory of truth to a finitely axiomatized theory T is more or less equivalent to a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Categorical characterizations of the natural numbers require primitive recursion.Leszek Aleksander Kołodziejczyk & Keita Yokoyama - 2015 - Annals of Pure and Applied Logic 166 (2):219-231.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Arithmetics of a Theory.Albert Visser - 2015 - Notre Dame Journal of Formal Logic 56 (1):81-119.
    In this paper we study the interpretations of a weak arithmetic, like Buss’s theory $\mathsf{S}^{1}_{2}$, in a given theory $U$. We call these interpretations the arithmetics of $U$. We develop the basics of the structure of the arithmetics of $U$. We study the provability logic of $U$ from the standpoint of the framework of the arithmetics of $U$. Finally, we provide a deeper study of the arithmetics of a finitely axiomatized sequential theory.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Strength of Truth-Theories.Richard Heck - manuscript
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? It turns out that, in a wide range of cases, we can get some nice answers to this question, but only if we work in a framework that is somewhat different from those usually employed in discussions of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Peano Corto and Peano Basso: A Study of Local Induction in the Context of Weak Theories.Albert Visser - 2014 - Mathematical Logic Quarterly 60 (1-2):92-117.
    In this paper we study local induction w.r.t. Σ1‐formulas over the weak arithmetic. The local induction scheme, which was introduced in, says roughly this: for any virtual class that is progressive, i.e., is closed under zero and successor, and for any non‐empty virtual class that is definable by a Σ1‐formula without parameters, the intersection of and is non‐empty. In other words, we have, for all Σ1‐sentences S, that S implies, whenever is progressive. Since, in the weak context, we have (at (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The predicative Frege hierarchy.Albert Visser - 2009 - Annals of Pure and Applied Logic 160 (2):129-153.
    In this paper, we characterize the strength of the predicative Frege hierarchy, , introduced by John Burgess in his book [J. Burgess, Fixing frege, in: Princeton Monographs in Philosophy, Princeton University Press, Princeton, 2005]. We show that and are mutually interpretable. It follows that is mutually interpretable with Q. This fact was proved earlier by Mihai Ganea in [M. Ganea, Burgess’ PV is Robinson’s Q, The Journal of Symbolic Logic 72 619–624] using a different proof. Another consequence of the our (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Pairs, sets and sequences in first-order theories.Albert Visser - 2008 - Archive for Mathematical Logic 47 (4):299-326.
    In this paper we study the idea of theories with containers, like sets, pairs, sequences. We provide a modest framework to study such theories. We prove two concrete results. First, we show that first-order theories of finite signature that have functional non-surjective ordered pairing are definitionally equivalent to extensions in the same language of the basic theory of non-surjective ordered pairing. Second, we show that a first-order theory of finite signature is sequential (is a theory of sequences) iff it is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Interpretability degrees of finitely axiomatized sequential theories.Albert Visser - 2014 - Archive for Mathematical Logic 53 (1-2):23-42.
    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory—like Elementary Arithmetic EA, IΣ1, or the Gödel–Bernays theory of sets and classes GB—have suprema. This partially answers a question posed by Švejdar in his paper (Commentationes Mathematicae Universitatis Carolinae 19:789–813, 1978). The partial solution of Švejdar’s problem follows from a stronger fact: the convexity of the degree structure of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory in the degree (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The unprovability of small inconsistency.Albert Visser - 1993 - Archive for Mathematical Logic 32 (4):275-298.
    We show that a consistent, finitely axiomatized, sequential theory cannot prove its own inconsistency on every definable cut. A corollary is that there are at least three degrees of global interpretability of theories equivalent modulo local interpretability to a consistent, finitely axiomatized, sequential theory U.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Faith & falsity.Albert Visser - 2004 - Annals of Pure and Applied Logic 131 (1-3):103-131.
    A theory T is trustworthy iff, whenever a theory U is interpretable in T, then it is faithfully interpretable. In this paper we give a characterization of trustworthiness. We provide a simple proof of Friedman’s Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Π20.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Second Incompleteness Theorem and Bounded Interpretations.Albert Visser - 2012 - Studia Logica 100 (1-2):399-418.
    In this paper we formulate a version of Second Incompleteness Theorem. The idea is that a sequential sentence has ‘consistency power’ over a theory if it enables us to construct a bounded interpretation of that theory. An interpretation of V in U is bounded if, for some n , all translations of V -sentences are U -provably equivalent to sentences of complexity less than n . We call a sequential sentence with consistency power over T a pro-consistency statement for T (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Growing Commas. A Study of Sequentiality and Concatenation.Albert Visser - 2009 - Notre Dame Journal of Formal Logic 50 (1):61-85.
    In his paper "Undecidability without arithmetization," Andrzej Grzegorczyk introduces a theory of concatenation $\mathsf{TC}$. We show that pairing is not definable in $\mathsf{TC}$. We determine a reasonable extension of $\mathsf{TC}$ that is sequential, that is, has a good sequence coding.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Rules and Arithmetics.Albert Visser - 1999 - Notre Dame Journal of Formal Logic 40 (1):116-140.
    This paper is concerned with the logical structure of arithmetical theories. We survey results concerning logics and admissible rules of constructive arithmetical theories. We prove a new theorem: the admissible propositional rules of Heyting Arithmetic are the same as the admissible propositional rules of Intuitionistic Propositional Logic. We provide some further insights concerning predicate logical admissible rules for arithmetical theories.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (15 other versions)2000 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium 2000.Carol Wood - 2001 - Bulletin of Symbolic Logic 7 (1):82-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • The interpretability logic of all reasonable arithmetical theories.Joost J. Joosten & Albert Visser - 2000 - Erkenntnis 53 (1-2):3-26.
    This paper is a presentation of astatus quæstionis, to wit of the problemof the interpretability logic of all reasonablearithmetical theories.We present both the arithmetical side and themodal side of the question.Dedicated to Dick de Jongh on the occasion of his 60th birthday.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Fragment of nonstandard analysis with a finitary consistency proof.Michal Rössler & Emil Jeřábek - 2007 - Bulletin of Symbolic Logic 13 (1):54-70.
    We introduce a nonstandard arithmetic $NQA^-$ based on the theory developed by R. Chuaqui and P. Suppes in [2] (we will denote it by $NQA^+$ ), with a weakened external open minimization schema. A finitary consistency proof for $NQA^-$ formalizable in PRA is presented. We also show interesting facts about the strength of the theories $NQA^-$ and $NQA^+$ ; $NQA^-$ is mutually interpretable with $I\Delta_0 + EXP$ , and on the other hand, $NQA^+$ interprets the theories IΣ1 and $WKL_0$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Axiomatizations of Peano Arithmetic: A Truth-Theoretic View.Ali Enayat & Mateusz Łełyk - 2023 - Journal of Symbolic Logic 88 (4):1526-1555.
    We employ the lens provided by formal truth theory to study axiomatizations of Peano Arithmetic ${\textsf {(PA)}}$. More specifically, let Elementary Arithmetic ${\textsf {(EA)}}$ be the fragment $\mathsf {I}\Delta _0 + \mathsf {Exp}$ of ${\textsf {PA}}$, and let ${\textsf {CT}}^-[{\textsf {EA}}]$ be the extension of ${\textsf {EA}}$ by the commonly studied axioms of compositional truth ${\textsf {CT}}^-$. We investigate both local and global properties of the family of first order theories of the form ${\textsf {CT}}^-[{\textsf {EA}}] +\alpha $, where $\alpha (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reflection algebras and conservation results for theories of iterated truth.Lev D. Beklemishev & Fedor N. Pakhomov - 2022 - Annals of Pure and Applied Logic 173 (5):103093.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Towards metamathematics of weak arithmetics over fuzzy logic.Petr Hájek - 2011 - Logic Journal of the IGPL 19 (3):467-475.
    This paper continues investigation of a very weak arithmetic FQ∼ that results from the well-known Robinson arithmetic Q by not assuming that addition and multiplication are total functions and, secondly, by weakening the classical logic to the basic mathematical fuzzy logic BL∀ . This investigation was started in the paper [5] where the first Gödel incompleteness of FQ∼ is proved. Here we first discuss Q∼ over the Gödel fuzzy logic G∀, or alternatively over the intuitionistic predicate logic, showing essential incompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (15 other versions)2005 Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '05.Stan S. Wainer - 2006 - Bulletin of Symbolic Logic 12 (2):310-361.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the provability logic of bounded arithmetic.Rineke Verbrugge & Alessandro Berarducci - 1991 - Annals of Pure and Applied Logic 61 (1-2):75-93.
    Let PLω be the provability logic of IΔ0 + ω1. We prove some containments of the form L ⊆ PLω < Th(C) where L is the provability logic of PA and Th(C) is a suitable class of Kripke frames.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)2005 annual meeting of the association for symbolic logic.Ilijas Farah, Deirdre Haskell, Andrey Morozov, Vladimir Pestov & Jindrich Zapletal - 2006 - Bulletin of Symbolic Logic 12 (1):143.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the untenability of Nelson's predicativism.St Iwan - 2000 - Erkenntnis 53 (1-2):147-154.
    By combining some technical results from metamathematicalinvestigations of systems of Bounded Arithmetic, I will givean argument for the untenability of Nelson 's finitistic program,encapsulated in his book Predicative Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The small‐is‐very‐small principle.Albert Visser - 2019 - Mathematical Logic Quarterly 65 (4):453-478.
    The central result of this paper is the small‐is‐very‐small principle for restricted sequential theories. The principle says roughly that whenever the given theory shows that a definable property has a small witness, i.e., a witness in a sufficiently small definable cut, then it shows that the property has a very small witness: i.e., a witness below a given standard number. Which cuts are sufficiently small will depend on the complexity of the formula defining the property. We draw various consequences from (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Logical Strength of Compositional Principles.Richard Heck - 2018 - Notre Dame Journal of Formal Logic 59 (1):1-33.
    This paper investigates a set of issues connected with the so-called conservativeness argument against deflationism. Although I do not defend that argument, I think the discussion of it has raised some interesting questions about whether what I call “compositional principles,” such as “a conjunction is true iff its conjuncts are true,” have substantial content or are in some sense logically trivial. The paper presents a series of results that purport to show that the compositional principles for a first-order language, taken (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Note on Typed Truth and Consistency Assertions.Carlo Nicolai - 2016 - Journal of Philosophical Logic 45 (1):89-119.
    In the paper we investigate typed axiomatizations of the truth predicate in which the axioms of truth come with a built-in, minimal and self-sufficient machinery to talk about syntactic aspects of an arbitrary base theory. Expanding previous works of the author and building on recent works of Albert Visser and Richard Heck, we give a precise characterization of these systems by investigating the strict relationships occurring between them, arithmetized model constructions in weak arithmetical systems and suitable set existence axioms. The (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Modal Matters for Interpretability Logics.Evan Goris & Joost Joosten - 2008 - Logic Journal of the IGPL 16 (4):371-412.
    This paper is the first in a series of three related papers on modal methods in interpretability logics and applications. In this first paper the fundaments are laid for later results. These fundaments consist of a thorough treatment of a construction method to obtain modal models. This construction method is used to reprove some known results in the area of interpretability like the modal completeness of the logic IL. Next, the method is applied to obtain new results: the modal completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On Interpretations of Arithmetic and Set Theory.Richard Kaye & Tin Lok Wong - 2007 - Notre Dame Journal of Formal Logic 48 (4):497-510.
    This paper starts by investigating Ackermann's interpretation of finite set theory in the natural numbers. We give a formal version of this interpretation from Peano arithmetic (PA) to Zermelo-Fraenkel set theory with the infinity axiom negated (ZF−inf) and provide an inverse interpretation going the other way. In particular, we emphasize the precise axiomatization of our set theory that is required and point out the necessity of the axiom of transitive containment or (equivalently) the axiom scheme of ∈-induction. This clarifies the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Another look at the second incompleteness theorem.Albert Visser - 2020 - Review of Symbolic Logic 13 (2):269-295.
    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the set of axioms varies. We extend the Feferman framework in one important point: we allow the interpretation of number theory to vary.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Self-Reference Upfront: A Study of Self-Referential Gödel Numberings.Balthasar Grabmayr & Albert Visser - 2023 - Review of Symbolic Logic 16 (2):385-424.
    In this paper we examine various requirements on the formalisation choices under which self-reference can be adequately formalised in arithmetic. In particular, we study self-referential numberings, which immediately provide a strong notion of self-reference even for expressively weak languages. The results of this paper suggest that the question whether truly self-referential reasoning can be formalised in arithmetic is more sensitive to the underlying coding apparatus than usually believed. As a case study, we show how this sensitivity affects the formal study (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Passive induction and a solution to a Paris–Wilkie open question.Dan E. Willard - 2007 - Annals of Pure and Applied Logic 146 (2-3):124-149.
    In 1981, Paris and Wilkie raised the open question about whether and to what extent the axiom system did satisfy the Second Incompleteness Theorem under Semantic Tableaux deduction. Our prior work showed that the semantic tableaux version of the Second Incompleteness Theorem did generalize for the most common definition of appearing in the standard textbooks.However, there was an alternate interesting definition of this axiom system in the Wilkie–Paris article in the Annals of Pure and Applied Logic 35 , pp. 261–302 (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Friedman-reflexivity.Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (9):103160.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deflationary truth and the ontology of expressions.Carlo Nicolai - 2015 - Synthese 192 (12):4031-4055.
    The existence of a close connection between results on axiomatic truth and the analysis of truth-theoretic deflationism is nowadays widely recognized. The first attempt to make such link precise can be traced back to the so-called conservativeness argument due to Leon Horsten, Stewart Shapiro and Jeffrey Ketland: by employing standard Gödelian phenomena, they concluded that deflationism is untenable as any adequate theory of truth leads to consequences that were not achievable by the base theory alone. In the paper I highlight, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Sequence encoding without induction.Emil Jeřábek - 2012 - Mathematical Logic Quarterly 58 (3):244-248.
    We show that the universally axiomatized, induction-free theory equation image is a sequential theory in the sense of Pudlák's 5, in contrast to the closely related Robinson's arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On me number of steps in proofs.Jan Krajíèek - 1989 - Annals of Pure and Applied Logic 41 (2):153-178.
    In this paper we prove some results about the complexity of proofs. We consider proofs in Hilbert-style formal systems such as in [17]. Thus a proof is a sequence offormulas satisfying certain conditions. We can view the formulas as being strings of symbols; hence the whole proof is a string too. We consider the following measures of complexity of proofs: length , depth and number of steps For a particular formal system and a given formula A we consider the shortest (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Curtis Franks. The autonomy of mathematical knowledge: Hilbert's program revisted. Cambridge: Cambridge university press, 2009. Isbn 978-0-521-51437-8. Pp. XIII+213. [REVIEW]S. Feferman - 2012 - Philosophia Mathematica 20 (3):387-400.
    Download  
     
    Export citation  
     
    Bookmark  
  • A note on the interpretability logic of finitely axiomatized theories.Maarten de Rijke - 1991 - Studia Logica 50 (2):241-250.
    In [6] Albert Visser shows that ILP completely axiomatizes all schemata about provability and relative interpretability that are provable in finitely axiomatized theories. In this paper we introduce a system called $\text{ILP}^{\omega}$ that completely axiomatizes the arithmetically valid principles of provability in and interpretability over such theories. To prove the arithmetical completeness of $\text{ILP}^{\omega}$ we use a suitable kind of tail models; as a byproduct we obtain a somewhat modified proof of Visser's completeness result.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the logic of reducibility: Axioms and examples. [REVIEW]Karl-Georg Niebergall - 2000 - Erkenntnis 53 (1-2):27-61.
    This paper is an investigation into what could be a goodexplication of ``theory S is reducible to theory T''''. Ipresent an axiomatic approach to reducibility, which is developedmetamathematically and used to evaluate most of the definitionsof ``reducible'''' found in the relevant literature. Among these,relative interpretability turns out to be most convincing as ageneral reducibility concept, proof-theoreticalreducibility being its only serious competitor left. Thisrelation is analyzed in some detail, both from the point of viewof the reducibility axioms and of modal logic.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Self provers and Σ1 sentences.Evan Goris & Joost Joosten - 2012 - Logic Journal of the IGPL 20 (1):1-21.
    This paper is the second in a series of three papers. All three papers deal with interpretability logics and related matters. In the first paper a construction method was exposed to obtain models of these logics. Using this method, we obtained some completeness results, some already known, and some new. In this paper, we will set the construction method to work to obtain more results. First, the modal completeness of the logic ILM is proved using the construction method. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Truth and speed-up.Martin Fischer - 2014 - Review of Symbolic Logic 7 (2):319-340.
    In this paper, we investigate the phenomenon ofspeed-upin the context of theories of truth. We focus on axiomatic theories of truth extending Peano arithmetic. We are particularly interested on whether conservative extensions of PA have speed-up and on how this relates to a deflationist account. We show that disquotational theories have no significant speed-up, in contrast to some compositional theories, and we briefly assess the philosophical implications of these results.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A generalization of the Second Incompleteness Theorem and some exceptions to it.Dan E. Willard - 2006 - Annals of Pure and Applied Logic 141 (3):472-496.
    This paper will introduce the notion of a naming convention and use this paradigm to both develop a new version of the Second Incompleteness Theorem and to describe when an axiom system can partially evade the Second Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Generalization of the Consistency Predicate.Zofia Adamowicz - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40).
    Download  
     
    Export citation  
     
    Bookmark