Switch to: Citations

References in:

Probability in Physics: Stochastic, Statistical, Quantum

In Alastair Wilson (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press (2014)

Add references

You must login to add references.
  1. (1 other version)Macroscopic Superpositions, Decoherent Histories, and the Emergence of Hydrodynamical Behaviour.Jonathan Halliwell - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Evidence for the Epistemic View of Quantum States: A Toy Theory.Robert W. Spekkens - 2007 - Physical Review A 75:032110.
    We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. Many quantum phenomena are found to have analogues within this toy theory. These include the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • Einstein, Incompleteness, and the Epistemic View of Quantum States.Nicholas Harrigan & Robert W. Spekkens - 2010 - Foundations of Physics 40 (2):125-157.
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • A subjectivist’s guide to objective chance.David K. Lewis - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 263-293.
    Download  
     
    Export citation  
     
    Bookmark   603 citations  
  • There Is No Puzzle about the Low Entropy Past.Craig Callender - 2004 - In Christopher Hitchcock (ed.), Contemporary debates in philosophy of science. Malden, MA: Blackwell. pp. 240-255.
    Suppose that God or a demon informs you of the following future fact: despite recent cosmological evidence, the universe is indeed closed and it will have a ‘final’ instant of time; moreover, at that final moment, all 49 of the world’s Imperial Faberge eggs will be in your bedroom bureau’s sock drawer. You’re absolutely certain that this information is true. All of your other dealings with supernatural powers have demonstrated that they are a trustworthy lot.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • What time reversal invariance is and why it matters.John Earman - 2002 - International Studies in the Philosophy of Science 16 (3):245 – 264.
    David Albert's Time and Chance (2000) provides a fresh and interesting perspective on the problem of the direction of time. Unfortunately, the book opens with a highly non-standard exposition of time reversal invariance that distorts the subsequent discussion. The present article not only has the remedial goal of setting the record straight about the meaning of time reversal invariance, but it also aims to show how the niceties of this symmetry concept matter to the problem of the direction of time (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (1 other version)A metaphysician looks at the Everett interpretation.John Hawthorne - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Quasiclassical Realms.Jim Hartle - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)A metaphysician looks at the Everett interpretation.John Hawthorne - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Can the world be only wavefunction?Tim Maudlin - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • On the Origins of the Arrow of Time: Why There is Still a Puzzle about the Low Entropy Past.Huw Price - 2004 - In Christopher Hitchcock (ed.), Contemporary debates in philosophy of science. Malden, MA: Blackwell. pp. 219--239.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Boltzmann's Approach to Statistical Mechanics.Sheldon Goldstein - unknown
    In the last quarter of the nineteenth century, Ludwig Boltzmann explained how irreversible macroscopic laws, in particular the second law of thermodynamics, originate in the time-reversible laws of microscopic physics. Boltzmann’s analysis, the essence of which I shall review here, is basically correct. The most famous criticisms of Boltzmann’s later work on the subject have little merit. Most twentieth century innovations – such as the identification of the state of a physical system with a probability distribution on its phase space, (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Many Minds are No Worse than One.David Papineau - 1996 - British Journal for the Philosophy of Science 47 (2):233-241.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Probability in Everettian Quantum Mechanics.Peter J. Lewis - 2010 - Manuscrito 33 (1):285--306.
    The main difficulty facing no-collapse theories of quantum mechanics in the Everettian tradition concerns the role of probability within a theory in which every possible outcome of a measurement actually occurs. The problem is two-fold: First, what do probability claims mean within such a theory? Second, what ensures that the probabilities attached to measurement outcomes match those of standard quantum mechanics? Deutsch has recently proposed a decision-theoretic solution to the second problem, according to which agents are rationally required to weight (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)One World versus Many: the Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation.Adrian Kent - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Decoherence and its Role in the Modern Measurement Problem.David Wallace - unknown
    Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made diffcult by the fact that the "measurement problem", as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)One World versus Many: the Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation.Adrian Kent - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • Typicality and the approach to equilibrium in Boltzmannian statistical mechanics.Roman Frigg - 2009 - Philosophy of Science 76 (5):997-1008.
    An important contemporary version of Boltzmannian statistical mechanics explains the approach to equilibrium in terms of typicality. The problem with this approach is that it comes in different versions, which are, however, not recognized as such and not clearly distinguished. This article identifies three different versions of typicality‐based explanations of thermodynamic‐like behavior and evaluates their respective successes. The conclusion is that the first two are unsuccessful because they fail to take the system's dynamics into account. The third, however, is promising. (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • On the time reversal invariance of classical electromagnetic theory.David B. Malament - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):295-315.
    David Albert claims that classical electromagnetic theory is not time reversal invariant. He acknowledges that all physics books say that it is, but claims they are ``simply wrong" because they rely on an incorrect account of how the time reversal operator acts on magnetic fields. On that account, electric fields are left intact by the operator, but magnetic fields are inverted. Albert sees no reason for the asymmetric treatment, and insists that neither field should be inverted. I argue, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)Macroscopic Superpositions, Decoherent Histories, and the Emergence of Hydrodynamical Behaviour.Jonathan Halliwell - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   8 citations