Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Infectious Disease Ontology.Lindsay Grey Cowell & Barry Smith - 2009 - In Lindsay Grey Cowell & Barry Smith (eds.), Infectious Disease Ontology. New York: Springer New York. pp. 373-395.
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Negative findings in electronic health records and biomedical ontologies: a realist approach.Werner Ceusters, Peter Elkin & Barry Smith - 2007 - International Journal of Medical Informatics 76 (3):S326-S333.
    PURPOSE—A substantial fraction of the observations made by clinicians and entered into patient records are expressed by means of negation or by using terms which contain negative qualifiers (as in “absence of pulse” or “surgical procedure not performed”). This seems at first sight to present problems for ontologies, terminologies and data repositories that adhere to a realist view and thus reject any reference to putative non-existing entities. Basic Formal Ontology (BFO) and Referent Tracking (RT) are examples of such paradigms. The (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Environment Ontology: Contextualising biological and biomedical entities.Pier Luigi Buttigieg, Norman Morrison, Barry Smith, Christopher J. Mungall & Suzanna E. Lewis - 2013 - Journal of Biomedical Semantics 4 (43):1-9.
    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s motivation, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • SNAP and SPAN: Towards dynamic spatial ontology.Pierre Grenon & Barry Smith - 2004 - Spatial Cognition and Computation 4 (1):69–103.
    We propose a modular ontology of the dynamic features of reality. This amounts, on the one hand, to a purely spatial ontology supporting snapshot views of the world at successive instants of time and, on the other hand, to a purely spatiotemporal ontology of change and process. We argue that dynamic spatial ontology must combine these two distinct types of inventory of the entities and relationships in reality, and we provide characterizations of spatiotemporal reasoning in the light of the interconnections (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Function, role and disposition in Basic Formal Ontology.Robert Arp & Barry Smith - 2008 - Proceedings of Bio-Ontologies Workshop, Intelligent Systems for Molecular Biology (ISMB), Toronto.
    Numerous research groups are now utilizing Basic Formal Ontology as an upper-level framework to assist in the organization and integration of biomedical information. This paper provides elucidation of the three existing BFO subcategories of realizable entity, namely function, role, and disposition. It proposes one further sub-category of tendency, and considers the merits of recognizing two sub-categories of function for domain ontologies, namely, artifactual and biological function. The motivation is to help advance the coherent ontological treatment of functions, roles, and dispositions, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations