Order:
  1. The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses.Laurel Cooper, Ramona Walls, Justin Elser, Maria A. Gandolfo, Dennis W. Stevenson, Barry Smith & Others - 2013 - Plant and Cell Physiology 54 (2):1-23..
    The Plant Ontology (PO; http://www.plantontology.org/) is a publicly-available, collaborative effort to develop and maintain a controlled, structured vocabulary (“ontology”) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Finding Our Way Through Phenotypes.Andrew R. Deans, Suzanna E. Lewis, Eva Huala, Salvatore S. Anzaldo, Michael Ashburner, James P. Balhoff, David C. Blackburn, Judith A. Blake, J. Gordon Burleigh, Bruno Chanet, Laurel D. Cooper, Mélanie Courtot, Sándor Csösz, Hong Cui, Barry Smith & Others - 2015 - PLoS Biol 13 (1):e1002033.
    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications.Eric Schiffman, Richard Ohrbach, E. Truelove, Edmond Truelove, John Look, Gary Anderson, Werner Ceusters, Barry Smith & Others - 2014 - Journal of Oral and Facial Pain and Headache 28 (1):6-27.
    Aims: The Research Diagnostic Criteria for Temporomandi¬bular Disorders (RDC/TMD) Axis I diagnostic algorithms were demonstrated to be reliable but below target sensitivity and specificity. Empirical data supported Axis I algorithm revisions that were valid. Axis II instruments were shown to be both reliable and valid. An international consensus workshop was convened to obtain recommendations and finalization of new Axis I diagnostic algorithms and new Axis II instruments. Methods: A comprehensive search of published TMD diagnostic literature was followed by review and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  66
    Protein Ontology: A Controlled Structured Network of Protein Entities.A. Natale Darren, N. Arighi Cecilia, A. Blake Judith, J. Bult Carol, R. Christie Karen, Cowart Julie, D’Eustachio Peter, D. Diehl Alexander, J. Drabkin Harold, Helfer Olivia, Barry Smith & Others - 2013 - Nucleic Acids Research 42 (1):D415-21..
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  40
    VO: Vaccine Ontology.Yongqun He, Lindsay Cowell, Alexander D. Diehl, H. L. Mobley, Bjoern Peters, Alan Ruttenberg, Richard H. Scheuermann, Ryan R. Brinkman, Melanie Courtot, Chris Mungall, Barry Smith & Others - 2009 - In ICBO 2009: Proceedings of the First International Conference on Biomedical Ontology. Buffalo:
    Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  42
    Protein-Centric Connection of Biomedical Knowledge: Protein Ontology Research and Annotation Tools.Cecilia N. Arighi, Darren A. Natale, Judith A. Blake, Carol J. Bult, Michael Caudy, Alexander D. Diehl, Harold J. Drabkin, Peter D'Eustachio, Alexei Evsikov, Hongzhan Huang, Barry Smith & Others - 2011 - In Proceedings of the 2nd International Conference on Biomedical Ontology. Buffalo, NY: NCOR. pp. 285-287.
    The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
    Download  
     
    Export citation  
     
    Bookmark  
  7.  28
    Six Questions on the Construction of Ontologies in Biomedicine.Anand Kumar, A. Burgun, W. Ceusters, J. Cimino, J. Davis, P. Elkin, I. Kalet, A. Rector, J. Rice, J. Rogers, Barry Smith & Others - 2005 - Report of the AMIA Working Group on Formal Biomedical Knowledge Representation 1.
    (Report assembled for the Workshop of the AMIA Working Group on Formal Biomedical Knowledge Representation in connection with AMIA Symposium, Washington DC, 2005.) Best practices in ontology building for biomedicine have been frequently discussed in recent years. However there is a range of seemingly disparate views represented by experts in the field. These views not only reflect the different uses to which ontologies are put, but also the experiences and disciplinary background of these experts themselves. We asked six questions related (...)
    Download  
     
    Export citation  
     
    Bookmark