Switch to: Citations

Add references

You must login to add references.
  1. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • (1 other version)A metaphysician looks at the Everett interpretation.John Hawthorne - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)How to prove the Born rule.David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantum Gravity.Carlo Rovelli - 2004 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • The Many-Worlds Interpretation of Quantum Mechanics.B. DeWitt & N. Graham (eds.) - 1973 - Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   214 citations  
  • Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • The Quantum Mechanics of Minds and Worlds.Jeffrey Alan Barrett - 1999 - Oxford, GB: Oxford University Press.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • The Life of The Cosmos. [REVIEW]Steven Weinstein & Arthur Fine - 1998 - Journal of Philosophy 95 (5):264-268.
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • (1 other version)How Many Lives Has Schrodinger's Cat?David Lewis - 2004 - Australasian Journal of Philosophy 82 (1):3-22.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The End of Time: The Next Revolution in Physics.Julian Barbour - 1999 - Weidenfeld & Nicholson.
    In a revolutionary new book, a theoretical physicist attacks the foundations of modern scientific theory, including the notion of time, as he shares evidence of ...
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • A subjectivist’s guide to objective chance.David K. Lewis - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 263-293.
    Download  
     
    Export citation  
     
    Bookmark   604 citations  
  • Every thing must go: metaphysics naturalized.James Ladyman & Don Ross - 2007 - New York: Oxford University Press. Edited by Don Ross, David Spurrett & John G. Collier.
    Every Thing Must Go aruges that the only kind of metaphysics that can contribute to objective knowledge is one based specifically on contemporary science as it ...
    Download  
     
    Export citation  
     
    Bookmark   671 citations  
  • (3 other versions)Quantum non-locality and relativity: metaphysical intimations of modern physics.Tim Maudlin - 2002 - Malden, Mass.: Blackwell.
    Modern physics was born from two great revolutions: relativity and quantum theory. Relativity imposed a locality constraint on physical theories: since nothing can go faster than light, very distant events cannot influence one another. Only in the last few decades has it become clear that quantum theory violates this constraint. The work of J. S. Bell has demonstrated that no local theory can return the predictions of quantum theory. Thus it would seem that the central pillars of modern physics are (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Saunders and Wallace reply.Simon Saunders & David Wallace - 2008 - British Journal for the Philosophy of Science 59 (3):315-317.
    A reply to a comment by Paul Tappenden (BJPS 59 (2008) pp. 307-314) on S. Saunders and D. Wallace, "Branching and Uncertainty" (BJPS 59 (2008) pp. 298-306).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)Everett and evidence.Hilary Greaves & Wayne Myrvold - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Much of the evidence for quantum mechanics is statistical in nature. The Everett interpretation, if it is to be a candidate for serious consideration, must be capable of doing justice to reasoning on which statistical evidence in which observed relative frequencies that closely match calculated probabilities counts as evidence in favour of a theory from which the probabilities are calculated. Since, on the Everett interpretation, all outcomes with nonzero amplitude are actualized on different branches, it is not obvious that sense (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Bell-type quantum field theories.Sheldon Goldstein - manuscript
    In [3] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Ψ|2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Physics and Leibniz's principles.Simon Saunders - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 289--307.
    It is shown that the Hilbert-Bernays-Quine principle of identity of indiscernibles applies uniformly to all the contentious cases of symmetries in physics, including permutation symmetry in classical and quantum mechanics. It follows that there is no special problem with the notion of objecthood in physics. Leibniz's principle of sufficient reason is considered as well; this too applies uniformly. But given the new principle of identity, it no longer implies that space, or atoms, are unreal.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • (1 other version)On the Everettian epistemic problem.Hilary Greaves - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • ‘Many Minds’ Interpretations of Quantum Mechanics: Replies to Replies.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (3):445-461.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Probability in the Everett interpretation.Hilary Greaves - 2007 - Philosophy Compass 2 (1):109–128.
    The Everett (many-worlds) interpretation of quantum mechanics faces a prima facie problem concerning quantum probabilities. Research in this area has been fast-paced over the last few years, following a controversial suggestion by David Deutsch that decision theory can solve the problem. This article provides a non-technical introduction to the decision-theoretic program, and a sketch of the current state of the debate.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Neural unpredictability, the interpretation of quantum theory, and the mind-body problem.Matthew J. Donald - 2002 - Quant-Ph/0208033.
    It has been suggested, on the one hand, that quantum states are just states of knowledge; and, on the other, that quantum theory is merely a theory of correlations. These suggestions are confronted with problems about the nature of psycho-physical parallelism and about how we could define probabilities for our individual future observations given our individual present and previous observations. The complexity of the problems is underlined by arguments that unpredictability in ordinary everyday neural functioning, ultimately stemming from small-scale uncertainties (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • (1 other version)Radical interpretation.David K. Lewis - 1974 - Synthese 23 (July-August):331-344.
    What knowledge would suffice to yield an interpretation of an arbitrary utterance of a language when such knowledge is based on evidence plausibly available to a nonspeaker of that language? it is argued that it is enough to know a theory of truth for the language and that the theory satisfies tarski's 'convention t' and that it gives an optimal fit to data about sentences held true, Under specified conditions, By native speakers.
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • Real patterns.Daniel C. Dennett - 1991 - Journal of Philosophy 88 (1):27-51.
    Are there really beliefs? Or are we learning (from neuroscience and psychology, presumably) that, strictly speaking, beliefs are figments of our imagination, items in a superceded ontology? Philosophers generally regard such ontological questions as admitting just two possible answers: either beliefs exist or they don't. There is no such state as quasi-existence; there are no stable doctrines of semi-realism. Beliefs must either be vindicated along with the viruses or banished along with the banshees. A bracing conviction prevails, then, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   638 citations  
  • Mind, Brain and the Quantum: The Compound "I".Michael Lockwood - 1989 - New York, NY, USA: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • (1 other version)One World versus Many: the Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation.Adrian Kent - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Radical Interpretation.Donald Davidson - 2003 - In John Heil (ed.), Philosophy of Mind: A Guide and Anthology. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   228 citations  
  • The Quantum Mechanics of Minds and Worlds.Simon Saunders - 2001 - Mind 110 (440):1039-1043.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (2 other versions)Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics.Tim Maudlin - 1997 - Noûs 31 (4):557-568.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):415-439.
    An analysis is made of Deutsch's recent claim to have derived the Born rule from decision-theoretic assumptions. It is argued that Deutsch's proof must be understood in the explicit context of the Everett interpretation, and that in this context, it essentially succeeds. Some comments are made about the criticism of Deutsch's proof by Barnum, Caves, Finkelstein, Fuchs, and Schack; it is argued that the flaw which they point out in the proof does not apply if the Everett interpretation is assumed.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Elementary Quantum Metaphysics.David Albert - 1996 - In James T. Cushing, Arthur Fine & Sheldon Goldstein (eds.), Bohmian mechanics and quantum theory: an appraisal. Springer. pp. 277-284.
    Once upon a time, the twentieth-century investigations of the behaviors of sub-atomic particles were thought to have established that there can be no such thing as an objective, observer-independent, scientifically realist, empirically adequate picture of the physical world.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Non-locality and Gauge Freedom in Deutsch and Hayden’s Formulation of Quantum Mechanics.David Wallace & Christopher G. Timpson - 2007 - Foundations of Physics 37 (6):951-955.
    Deutsch and Hayden have proposed an alternative formulation of quantum mechanics which is completely local. We argue that their proposal must be understood as having a form of ‘gauge freedom’ according to which mathematically distinct states are physically equivalent. Once this gauge freedom is taken into account, their formulation is no longer local.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The timelessness of quantum gravity: II. The appearance of dynamics in static configurations.Julian B. Barbour - 1994 - Classical and Quantum Gravity 11:2875--97.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Quantum theory and the brain.Matthew Donald - unknown
    A human brain operates as a pattern of switching. An abstract definition of a quantum mechanical switch is given which allows for the continual random fluctuations in the warm wet environment of the brain. Among several switch-like entities in the brain, we choose to focus on the sodium channel proteins. After explaining what these are, we analyse the ways in which our definition of a quantum switch can be satisfied by portions of such proteins. We calculate the perturbing effects of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Language use in a branching universe.David Wallace - unknown
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Branching and Uncertainty.Simon Saunders & David Wallace - 2008 - British Journal for the Philosophy of Science 59 (3):293-305.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utterances typically made about (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation.David Wallace - 2006 - British Journal for the Philosophy of Science 57 (4):655-689.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective probability and the Principal Principle 2.2 Three ways of (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • How to combine chance and determinism: Thinking about the future in an Everett universe.Jenann Ismael - 2003 - Philosophy of Science 70 (4):776-790.
    I propose, in the context of Everett interpretations of quantum mechanics, a way of understanding how there can be genuine uncertainty about the future notwithstanding that the universe is governed by known, deterministic dynamical laws, and notwithstanding that there is no ignorance about initial conditions, nor anything in the universe whose evolution is not itself governed by the known dynamical laws. The proposal allows us to draw some lessons about the relationship between chance and determinism, and to dispel one source (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Every Thing Must Go: Metaphysics Naturalized.James Ladyman & Don Ross - 2007 - In James Ladyman & Don Ross (eds.), Every thing must go: metaphysics naturalized. New York: Oxford University Press.
    This book argues that the only kind of metaphysics that can contribute to objective knowledge is one based specifically on contemporary science as it really is, and not on philosophers' a priori intuitions, common sense, or simplifications of science. In addition to showing how recent metaphysics has drifted away from connection with all other serious scholarly inquiry as a result of not heeding this restriction, this book demonstrates how to build a metaphysics compatible with current fundamental physics, which, when combined (...)
    Download  
     
    Export citation  
     
    Bookmark   751 citations  
  • Review: Q uantum Mechanics and Experience. [REVIEW]Lawrence Sklar - 1996 - Philosophy and Phenomenological Research 56 (4):973-975.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • The Emperor’s New Mind: Concerning Computers, Minds, andthe Laws of Physics.Roger Penrose - 1989 - Science and Society 54 (4):484-487.
    Download  
     
    Export citation  
     
    Bookmark   404 citations  
  • (1 other version)Uncertainty and probability for branching selves.Peter J. Lewis - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Mind's I: Fantasies and Reflections on Self and Soul.Andrew Hamilton - 1984 - Philosophical Quarterly 34 (134):80-81.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Radical Interpretation.Donald Davidson - 1973 - Dialectica 27 (1):313-328.
    Download  
     
    Export citation  
     
    Bookmark   352 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations