Switch to: References

Citations of:

The Quantum Mechanics of Minds and Worlds

Mind 110 (440):1039-1043 (2001)

Add citations

You must login to add citations.
  1. General Covariance, Diffeomorphism Invariance, and Background Independence in 5 Dimensions.Antonio Vassallo - 2015 - In Tomasz Bigaj & Christian Wüthrich (eds.), Metaphysics in Contemporary Physics. Boston: Brill | Rodopi.
    The paper considers the "GR-desideratum", that is, the way general relativity implements general covariance, diffeomorphism invariance, and background independence. Two cases are discussed where 5-dimensional generalizations of general relativity run into interpretational troubles when the GR-desideratum is forced upon them. It is shown how the conceptual problems dissolve when such a desideratum is relaxed. In the end, it is suggested that a similar strategy might mitigate some major issues such as the problem of time or the embedding of quantum non-locality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wright and Suarez on the Verification Principle.Byeong&Ndashuk Yi - 2003 - Analysis 63 (1):58-61.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bloch's paradox and the nonlocality of chance.Brian A. Woodcock - 2007 - International Studies in the Philosophy of Science 21 (2):137 – 156.
    I show how an almost exclusive focus on the simplest case - the case of a single particle - along with the commonplace conception of the single-particle wave function as a scalar field on spacetime contributed to the perception, first brought to light by I. Bloch, that there existed a contradiction between quantum theory with instantaneous state collapses and special relativity. The incompatibility is merely apparent since treating wave-function values as hypersurface dependent avoids the contradiction. After clarifying confusions which fueled (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   128 citations  
  • David Wallace the emergent multiverse: Quantum theory according to the Everett interpretation.Lev Vaidman - 2015 - British Journal for the Philosophy of Science 66 (2):465-468.
    We have, then, a theory which is objectively causal and continuous, while at the same time subjectively probabilistic and discontinuous. It can lay claim to a certain completeness, since it applies to all systems, of whatever size, and is still capable of explaining the appearance of the macroscopic world. The price, however, is the abandonment of the concept of the uniqueness of the observer, with its somewhat disconcerting philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Realism in Context: The Examples of Lifeworld and Quantum Physics.Gregor Schiemann - 2009 - Human Affairs 19 (2):211-222.
    Lifeworld realism and quantum-physical realism are taken as experience-dependent conceptions of the world that become objects of explicit reflection when confronted with context-external discourses. After a brief sketch of the two contexts of experience—lifeworld and quantum physics—and their realist interpretations, I will discuss the quantum world from the perspective of lifeworld realism. From this perspective, the quantum world—roughly speaking—has to be either unreal or else constitute a different reality. Then, I invert the perspective and examine the lifeworld from the standpoint (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reply to Skow.John T. Roberts - 2007 - Philosophy and Phenomenological Research 75 (1):163-167.
    We have argued against a standard way of defining Humean supervenience about laws, and in favor of an alternative definition. Skow says that our argument against the standard definition makes a big mistake. He is right about this. But that mistake is correctable. Skow also argues that our alternative definition is seriously flawed. We think he is wrong about this.
    Download  
     
    Export citation  
     
    Bookmark  
  • Van Frasssen, Everett, and the critique of the copenhagem view of measurement.Stefano Osnaghi - 2008 - Principia: An International Journal of Epistemology 12 (2):155-176.
    Bas van Fraassen advocates a “Copenhagen variant” of the modal interpretation of quantum mechanics. However, he believes that the Copenhagen approach to measurement is not fully satisfactory, since it seems to rule out the possibility of providing a physical account of the observation process. This was also what John Wheeler had in mind when, in the mid-1950’s, he sponsored the “relative state” formulation proposed by his student Hugh Everett. Wheeler, who considered himself an orthodox Bohrian, tried to convince Bohr to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativistic quantum becoming.Wayne C. Myrvold - 2003 - British Journal for the Philosophy of Science 54 (3):475-500.
    In a recent paper, David Albert has suggested that no quantum theory can yield a description of the world unfolding in Minkowski spacetime. This conclusion is premature; a natural extension of Stein's notion of becoming in Minkowski spacetime to accommodate the demands of quantum nonseparability yields such an account, an account that is in accord with a proposal which was made by Aharonov and Albert but which is dismissed by Albert as a ‘mere trick’. The nature of such an account (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Quantum Mechanics in a New Light.Ulrich J. Mohrhoff - 2017 - Foundations of Science 22 (3):517-537.
    Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata, and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A New Problem for Quantum Mechanics.Alexander Meehan - 2020 - British Journal for the Philosophy of Science:000-000.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state ('no hidden variables'), the control problem turns on a premise about our ability to prepare or control quantum states. After raising (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The price of insisting that quantum mechanics is complete.P. D. Magnus - 2004 - British Journal for the Philosophy of Science 55 (2):257-267.
    The Bare Theory was offered by David Albert as a way of standing by the completeness of quantum mechanics in the face of the measurement problem. This paper surveys objections to the Bare Theory that recur in the literature: what will here be called the oddity objection, the coherence objection, and the context-of-the-universe objection. Critics usually take the Bare Theory to have unacceptably bizarre consequences, but to be free from internal contradiction. Bizarre consequences need not be decisive against the Bare (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Empty waves in Bohmian quantum mechanics.Peter J. Lewis - 2007 - British Journal for the Philosophy of Science 58 (4):787 - 803.
    There is a recurring line of argument in the literature to the effect that Bohm's theory fails to solve the measurement problem. I show that this argument fails in all its variants. Hence Bohm's theory, whatever its drawbacks, at least succeeds in solving the measurement problem. I briefly discuss a similar argument that has been raised against the GRW theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Conspiracy theories of quantum mechanics.Peter J. Lewis - 2006 - British Journal for the Philosophy of Science 57 (2):359-381.
    It has long been recognized that a local hidden variable theory of quantum mechanics can in principle be constructed, provided one is willing to countenance pre-measurement correlations between the properties of measured systems and measuring devices. However, this ‘conspiratorial’ approach is typically dismissed out of hand. In this article I examine the justification for dismissing conspiracy theories of quantum mechanics. I consider the existing arguments against such theories, and find them to be less than conclusive. I suggest a more powerful (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • When Greenberger, Horne and Zeilinger Meet Wigner’s Friend.Gijs Leegwater - 2022 - Foundations of Physics 52 (4):1-17.
    A general argument is presented against relativistic, unitary, single-outcome quantum mechanics. This is achieved by combining the Wigner’s Friend thought experiment with measurements on a Greenberger–Horne–Zeilinger state, and describing the evolution of the quantum state in various inertial frames. Assuming unitary quantum mechanics and single outcomes, the result is that the Born rule must be violated in some inertial frame: in that frame, outcomes are obtained for which no corresponding term exists in the pre-measurement wavefunction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An impossibility theorem for parameter independent hidden variable theories.Gijs Leegwater - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54:18-34.
    Recently, Roger Colbeck and Renato Renner have claimed that ‘[n]o extension of quantum theory can have improved predictive power'. If correct, this is a spectacular impossibility theorem for hidden variable theories, which is more general than the theorems of Bell and Leggett. Also, C&R have used their claim in attempt to prove that a system's quantum-mechanical wave function is in a one-to-one correspondence with its ‘ontic' state. C&R's claim essentially means that in any hidden variable theory that is compatible with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Emergent spacetime and empirical (in) coherence.Nick Huggett & Christian Wüthrich - 2013 - Studies in History and Philosophy of Modern Physics 44 (3):276-285.
    Numerous approaches to a quantum theory of gravity posit fundamental ontologies that exclude spacetime, either partially or wholly. This situation raises deep questions about how such theories could relate to the empirical realm, since arguably only entities localized in spacetime can ever be observed. Are such entities even possible in a theory without fundamental spacetime? How might they be derived, formally speaking? Moreover, since by assumption the fundamental entities cannot be smaller than the derived and so cannot ‘compose’ them in (...)
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • The measurement problem revisited.Shan Gao - unknown
    It has been realized that in order to solve the measurement problem, the physical state representing the measurement result is required to be also the physical state on which the mental state of an observer supervenes. This introduces an additional restriction on the solutions to the measurement problem. In this paper, I give a new formulation of the measurement problem which lays more stress on psychophysical connection, and analyze whether Everett's theory, Bohm's theory and dynamical collapse theories can satisfy the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The measurement problem revisited.Shan Gao - 2019 - Synthese 196 (1):299-311.
    It has been realized that the measurement problem of quantum mechanics is essentially the determinate-experience problem, and in order to solve the problem, the physical state representing the measurement result is required to be also the physical state on which the mental state of an observer supervenes. This necessitates a systematic analysis of the forms of psychophysical connection in the solutions to the measurement problem. In this paper, I propose a new, mentalistic formulation of the measurement problem which lays more (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to consider the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Critical notice.Jeremy Butterfield - 2002 - British Journal for the Philosophy of Science 53 (2):289-330.
    This review of Julian Barbour's The End of Time ([1999]) discusses his Machian theories of dynamics, and his proposal that a Machian perspective enables one to solve the problem of time in quantum geometrodynamics, viz. by saying that there is no time! 1 Introduction 2 Machian themes in classical physics 2.1 The status quo 2.2 Machianism 2.2.1 The temporal metric as emergent 2.2.2 Machian theories 2.2.3 Assessing intrinsic dynamics 3 The end of time? 3.1 Time unreal? The classical case 3.1.1 (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Relational quantum mechanics and the determinacy problem.Matthew J. Brown - 2009 - British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the ‘determinacy problem', but (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • That Von Neumann did not believe in a physical collapse.Lon Becker - 2004 - British Journal for the Philosophy of Science 55 (1):121-135.
    Many works intended to introduce interpretive issues in quantum mechanics present John von Neumann as having a view in which measurement produces a physical collapse in the system being measured. In this paper I argue that such a reading of von Neumann is inconsistent with what von Neumann actually says. I show that much of what he says makes no sense on the physical collapse reading, but falls into place if we assume he does not have such a view. I (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The quantum mechanics of minds and worlds.Lon Becker - 2001 - Philosophical Review 110 (3):482-484.
    There has been a lot of interest over the last fifteen years or so in no-collapse interpretations of quantum mechanics. The Bohm interpretation of quantum mechanics has received several thorough accounts, perhaps most notably by Bohm himself.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The preferred-basis problem and the quantum mechanics of everything.Jeffrey A. Barrett - 2005 - British Journal for the Philosophy of Science 56 (2):199-220.
    argued that there are two options for what he called a realistic solution to the quantum measurement problem: (1) select a preferred set of observables for which definite values are assumed to exist, or (2) attempt to assign definite values to all observables simultaneously (1810–1). While conventional wisdom has it that the second option is ruled out by the Kochen-Specker theorem, Vink nevertheless advocated it. Making every physical quantity determinate in quantum mechanics carries with it significant conceptual costs, but it (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Temporal Fictionalism for a Timeless World.Sam Baron, Kristie Miller & Jonathan Tallant - 2019 - Philosophy and Phenomenological Research 102 (2):281-301.
    Current debate in the metaphysics of time ordinarily assumes that we should be realists about time. Recently, however, a number of physicists and philosophers of physics have proposed that time will play no role in a completed theory of quantum gravity. This paper defends fictionalism about temporal thought, on the supposition that our world is timeless. We argue that, in the face of timeless physical theories, realism about temporal thought is unsustainable: some kind of anti-realism must be adopted. We go (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Worlds.Jeffrey A. Barrett - 2016 - Principia: An International Journal of Epistemology 20 (1):45-60.
    Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Faithful Interpretation of Pure Wave Mechanics.Jeffrey A. Barrett - 2011 - British Journal for the Philosophy of Science 62 (4):693-709.
    Given Hugh Everett III's understanding of the proper cognitive status of physical theories, his relative-state formulation of pure wave mechanics arguably qualifies as an empirically acceptable physical theory. The argument turns on the precise nature of the relationship that Everett requires between the empirical substructure of an empirically faithful physical theory and experience. On this view, Everett provides a weak resolution to both the determinate record and the probability problems encountered by pure wave mechanics, and does so in a way (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Approximate Truth and Descriptive Nesting.Jeffrey Alan Barrett - 2008 - Erkenntnis 68 (2):213-224.
    There is good reason to suppose that our best physical theories, quantum mechanics and special relativity, are false if taken together and literally. If they are in fact false, then how should they count as providing knowledge of the physical world? One might imagine that, while strictly false, our best physical theories are nevertheless in some sense probably approximately true. This paper presents a notion of local probable approximate truth in terms of descriptive nesting relations between current and subsequent theories. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Why decoherence has not solved the measurement problem: a response to P.W. Anderson.Stephen L. Adler - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):135-142.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility of the widespread, monistic (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Prolegomenon to the Ontology of the Everett Interpretation.David Wallace - unknown
    In this article, I briefly explain the quantum measurement problem and the Everett interpretation, in a way that is faithful to modern physics and yet accessible to readers without any physics training. I then consider the metaphysical lessons for ontology from quantum mechanics under the Everett interpretation. My conclusions are largely negative: I argue that very little can be said in full generality about the ontology of quantum mechanics, because quantum mechanics, like abstract classical mechanics, is a framework within which (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • In Defense of the Metaphysics of Entanglement.David Glick & George Darby - forthcoming - In David Glick, George Darby & Anna Marmodoro (eds.), The Foundation of Reality: Fundamentality, Space, and Time. Oxford University Press.
    Quantum entanglement has long been thought to be have deep metaphysical consequences. For example, it has been claimed to show that Humean supervenience is false or to involve a novel form of ontological holism. One way to avoid confronting the metaphysical consequences is to adopt some form of antirealism. In this paper we discuss two prominent strands in recent literature—wavefunction realism and “Super-Humeanism”—that appear quite different, but, as we see it, are instances of a more general strategy. In effect, what (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short and self-contained introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Language use in a branching universe.David Wallace - unknown
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Why we cannot see the tails of Schrödinger's cat.Shan Gao - unknown
    In collapse theories of quantum mechanics such as the GRW theory, the measurement result is represented by the post-measurement state which is still a superposition of different result branches, although the modulus squared of the amplitude of one result branch is close to one. This leads to the tails problem. In this paper, I present a new analysis of the tails problem of collapse theories, and suggest a more complete solution to the problem. First, I argue that the tails problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Typicality in Pure Wave Mechanics.Jeffrey A. Barrett - unknown
    Hugh Everett III's pure wave mechanics is a deterministic physical theory with no probabilities. He nevertheless sought to show how his theory might be understood as making the same statistical predictions as the standard collapse formulation of quantum mechanics. We will consider Everett's argument for pure wave mechanics, how it depends on the notion of branch typicality, and the relationship between the predictions of pure wave mechanics and the standard quantum probabilities.
    Download  
     
    Export citation  
     
    Bookmark  
  • Time before time - classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world.Ruediger Vaas - unknown
    Did the universe have a beginning or does it exist forever, i.e. is it eternal at least in relation to the past? This fundamental question was a main topic in ancient philosophy of nature and the Middle Ages. Philosophically it was more or less banished then by Immanuel Kant's Critique of Pure Reason. But it used to have and still has its revival in modern physical cosmology both in the controversy between the big bang and steady state models some decades (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Entension, or How it could happen that an object is wholly located in each of many places.Josh Parsons - unknown
    Normally this is not how we think material objects work. I, for example, am a material object that is located in multiple places: this place to my left where my left arm is, and this, distinct, place to my right, where my right arm is. But I am only partially located in each place. My left arm is a part of me that fills exactly the place to my left, and my right arm is a distinct part of me that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Structural Interpretation Of Pure Wave Mechanics.Jeffrey A. Barrett - 2010 - Humana Mente 4 (13).
    Download  
     
    Export citation  
     
    Bookmark   8 citations