Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Basic Laws of Arithmetic.Gottlob Frege - 1893 - Oxford, U.K.: Oxford University Press. Edited by Philip A. Ebert, Marcus Rossberg & Crispin Wright.
    The first complete English translation of a groundbreaking work. An ambitious account of the relation of mathematics to logic. Includes a foreword by Crispin Wright, translators' Introduction, and an appendix on Frege's logic by Roy T. Cook. The German philosopher and mathematician Gottlob Frege (1848-1925) was the father of analytic philosophy and to all intents and purposes the inventor of modern logic. Basic Laws of Arithmetic, originally published in German in two volumes (1893, 1903), is Freges magnum opus. It was (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Frege's theorem.Richard G. Heck - 2011 - New York: Clarendon Press.
    The book begins with an overview that introduces the Theorem and the issues surrounding it, and explores how the essays that follow contribute to our understanding of those issues.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The Existence (and Non-existence) of Abstract Objects.Richard Heck - 2011 - In Richard G. Heck (ed.), Frege's theorem. New York: Clarendon Press.
    This paper is concerned with neo-Fregean accounts of reference to abstract objects. It develops an objection to the most familiar such accounts, due to Bob Hale and Crispin Wright, based upon what I call the 'proliferation problem': Hale and Wright's account makes reference to abstract objects seem too easy, as is shown by the fact that any equivalence relation seems as good as any other. The paper then develops a response to this objection, and offers an account of what it (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Frege's conception of numbers as objects.Crispin Wright - 1983 - [Aberdeen]: Aberdeen University Press.
    Download  
     
    Export citation  
     
    Bookmark   239 citations  
  • The Consistency of predicative fragments of frege’s grundgesetze der arithmetik.Richard G. Heck - 1996 - History and Philosophy of Logic 17 (1-2):209-220.
    As is well-known, the formal system in which Frege works in his Grundgesetze der Arithmetik is formally inconsistent, Russell’s Paradox being derivable in it.This system is, except for minor differ...
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as the (...)
    Download  
     
    Export citation  
     
    Bookmark   272 citations  
  • Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Systems of predicative analysis.Solomon Feferman - 1964 - Journal of Symbolic Logic 29 (1):1-30.
    This paper is divided into two parts. Part I provides a resumé of the evolution of the notion of predicativity. Part II describes our own work on the subject.Part I§1. Conceptions of sets.Statements about sets lie at the heart of most modern attempts to systematize all (or, at least, all known) mathematics. Technical and philosophical discussions concerning such systematizations and the underlying conceptions have thus occupied a considerable portion of the literature on the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Frege’s Conception of Numbers as Objects.Crispin Wright - 1983 - Critical Philosophy 1 (1):97.
    Download  
     
    Export citation  
     
    Bookmark   345 citations  
  • (1 other version)Frege’s Theorem: An Introduction.Richard G. Heck - 1999 - The Harvard Review of Philosophy 7 (1):56-73.
    A brief, non-technical introduction to technical and philosophical aspects of Frege's philosophy of arithmetic. The exposition focuses on Frege's Theorem, which states that the axioms of arithmetic are provable, in second-order logic, from a single non-logical axiom, "Hume's Principle", which itself is: The number of Fs is the same as the number of Gs if, and only if, the Fs and Gs are in one-one correspondence.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic.Sean Walsh - 2016 - Journal of Philosophical Logic 45 (3):277-326.
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church’s intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Fragments of frege’s grundgesetze and gödel’s constructible universe.Sean Walsh - 2016 - Journal of Symbolic Logic 81 (2):605-628.
    Frege's Grundgesetze was one of the 19th century forerunners to contemporary set theory which was plagued by the Russell paradox. In recent years, it has been shown that subsystems of the Grundgesetze formed by restricting the comprehension schema are consistent. One aim of this paper is to ascertain how much set theory can be developed within these consistent fragments of the Grundgesetze, and our main theorem shows that there is a model of a fragment of the Grundgesetze which defines a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Grundgesetze der arithmetik.Gottlob Frege - 1893 - Jena,: H. Pohle.
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • Conservativeness, Stability, and Abstraction.Roy T. Cook - 2012 - British Journal for the Philosophy of Science 63 (3):673-696.
    One of the main problems plaguing neo-logicism is the Bad Company challenge: the need for a well-motivated account of which abstraction principles provide legitimate definitions of mathematical concepts. In this article a solution to the Bad Company challenge is provided, based on the idea that definitions ought to be conservative. Although the standard formulation of conservativeness is not sufficient for acceptability, since there are conservative but pairwise incompatible abstraction principles, a stronger conservativeness condition is sufficient: that the class of acceptable (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Burgess' PV Is Robinson's Q.Mihai Ganea - 2007 - Journal of Symbolic Logic 72 (2):619 - 624.
    In [2] John Burgess describes predicative versions of Frege's logic and poses the problem of finding their exact arithmetical strength. I prove here that PV, the simplest such theory, is equivalent to Robinson's arithmetical theory Q.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Basic laws of arithmetic.Gottlob Frege - 1893 - In Basic Laws of Arithmetic. Oxford, U.K.: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • (1 other version)The Foundations of Arithmetic. A Logico-Mathematical Enquiry into the Concept of Number. [REVIEW]E. N. - 1951 - Journal of Philosophy 48 (10):342.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The predicative Frege hierarchy.Albert Visser - 2009 - Annals of Pure and Applied Logic 160 (2):129-153.
    In this paper, we characterize the strength of the predicative Frege hierarchy, , introduced by John Burgess in his book [J. Burgess, Fixing frege, in: Princeton Monographs in Philosophy, Princeton University Press, Princeton, 2005]. We show that and are mutually interpretable. It follows that is mutually interpretable with Q. This fact was proved earlier by Mihai Ganea in [M. Ganea, Burgess’ PV is Robinson’s Q, The Journal of Symbolic Logic 72 619–624] using a different proof. Another consequence of the our (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Fixing Frege.John P. Burgess - 2005 - Princeton University Press.
    The great logician Gottlob Frege attempted to provide a purely logical foundation for mathematics. His system collapsed when Bertrand Russell discovered a contradiction in it. Thereafter, mathematicians and logicians, beginning with Russell himself, turned in other directions to look for a framework for modern abstract mathematics. Over the past couple of decades, however, logicians and philosophers have discovered that much more is salvageable from the rubble of Frege's system than had previously been assumed. A variety of repaired systems have been (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)Logic, Logic and Logic.George Boolos & Richard C. Jeffrey - 1998 - Studia Logica 66 (3):428-432.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl.Gottlob Frege - 1884 - Wittgenstein-Studien 3 (2):993-999.
    Download  
     
    Export citation  
     
    Bookmark   317 citations  
  • (1 other version)Logic, Logic, and Logic.George Boolos - 2000 - History and Philosophy of Logic 21 (3):223-229.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Frege’s Philosophy of Mathematics. [REVIEW]Sanford Shieh - 1997 - Philosophical Review 106 (2):275.
    The days when Frege was more footnoted than read are now long gone; still, until very recently he has been read rather selectively. No doubt many had an inkling that there’s more to Frege than the sense/reference distinction; but few, one suspects, thought that his philosophy of mathematics was as fertile and intriguing as the present collection demonstrates. Perhaps, as Paul Benacerraf’s essay in this collection suggests, logical positivism should be held partly responsible for the neglect of this aspect of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Some Criteria for Acceptable Abstraction.Øystein Linnebo - 2011 - Notre Dame Journal of Formal Logic 52 (3):331-338.
    Which abstraction principles are acceptable? A variety of criteria have been proposed, in particular irenicity, stability, conservativeness, and unboundedness. This note charts their logical relations. This answers some open questions and corrects some old answers.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • On the consistency of the Δ11-CA fragment of Frege's grundgesetze.Fernando Ferreira & Kai F. Wehmeier - 2002 - Journal of Philosophical Logic 31 (4):301-311.
    It is well known that Frege's system in the Grundgesetze der Arithmetik is formally inconsistent. Frege's instantiation rule for the second-order universal quantifier makes his system, except for minor differences, full (i.e., with unrestricted comprehension) second-order logic, augmented by an abstraction operator that abides to Frege's basic law V. A few years ago, Richard Heck proved the consistency of the fragment of Frege's theory obtained by restricting the comprehension schema to predicative formulae. He further conjectured that the more encompassing Δ₁¹-comprehension (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • On the consistency of the first-order portion of Frege's logical system.Terence Parsons - 1987 - Notre Dame Journal of Formal Logic 28 (1):161-168.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • John P. Burgess, Fixing Frege. [REVIEW]Pierre Swiggers - 2006 - Tijdschrift Voor Filosofie 68 (3):665-665.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • [Omnibus Review].William Demopoulos - 1998 - Journal of Symbolic Logic 63 (4):1598-1602.
    Richard G. Heck, On the Philosophical Significance of Frege's Theorem. Language, Thought, and Logic, Essays in Honour of Michael Dummett.George Boolos, Is Hume's Principle Analytic?.Charles Parsons, Wright onion and Set Theory.Richard G. Heck, The Julius Caesar Objection.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Predicativity.Solomon Feferman - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press.
    This chapter is a detailed study of predicativity in mathematics. It presents a number of historical versions predicativity requirements, looking for unifying ideas. The further development of the notions and requirements up to the present is traced, articulating connections among the different ideas. One underlying theme of the chapter is the motivations for the various requirements for rejecting impredicativity and the various ways of stating the requirement.
    Download  
     
    Export citation  
     
    Bookmark   25 citations