Switch to: References

Add citations

You must login to add citations.
  1. Impredicativity and Paradox.Gabriel Uzquiano - 2019 - Thought: A Journal of Philosophy 8 (3):209-221.
    Thought: A Journal of Philosophy, EarlyView.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quine’s conjecture on many-sorted logic.Thomas William Barrett & Hans Halvorson - 2017 - Synthese 194 (9):3563-3582.
    Quine often argued for a simple, untyped system of logic rather than the typed systems that were championed by Russell and Carnap, among others. He claimed that nothing important would be lost by eliminating sorts, and the result would be additional simplicity and elegance. In support of this claim, Quine conjectured that every many-sorted theory is equivalent to a single-sorted theory. We make this conjecture precise, and prove that it is true, at least according to one reasonable notion of theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Abstraction Reconceived.J. P. Studd - 2016 - British Journal for the Philosophy of Science 67 (2):579-615.
    Neologicists have sought to ground mathematical knowledge in abstraction. One especially obstinate problem for this account is the bad company problem. The leading neologicist strategy for resolving this problem is to attempt to sift the good abstraction principles from the bad. This response faces a dilemma: the system of ‘good’ abstraction principles either falls foul of the Scylla of inconsistency or the Charybdis of being unable to recover a modest portion of Zermelo–Fraenkel set theory with its intended generality. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Bad company and neo-Fregean philosophy.Matti Eklund - 2009 - Synthese 170 (3):393-414.
    A central element in neo-Fregean philosophy of mathematics is the focus on abstraction principles, and the use of abstraction principles to ground various areas of mathematics. But as is well known, not all abstraction principles are in good standing. Various proposals for singling out the acceptable abstraction principles have been presented. Here I investigate what philosophical underpinnings can be provided for these proposals; specifically, underpinnings that fit the neo-Fregean's general outlook. Among the philosophical ideas I consider are: general views on (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Strength of Abstraction with Predicative Comprehension.Sean Walsh - 2016 - Bulletin of Symbolic Logic 22 (1):105–120.
    Frege's theorem says that second-order Peano arithmetic is interpretable in Hume's Principle and full impredicative comprehension. Hume's Principle is one example of an abstraction principle, while another paradigmatic example is Basic Law V from Frege's Grundgesetze. In this paper we study the strength of abstraction principles in the presence of predicative restrictions on the comprehension schema, and in particular we study a predicative Fregean theory which contains all the abstraction principles whose underlying equivalence relations can be proven to be equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Consistency and the theory of truth.Richard Heck - 2015 - Review of Symbolic Logic 8 (3):424-466.
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? Once the question has been properly formulated, the answer turns out to be about as elegant as one could want: Adding a theory of truth to a finitely axiomatized theory T is more or less equivalent to a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relative categoricity and abstraction principles.Sean Walsh & Sean Ebels-Duggan - 2015 - Review of Symbolic Logic 8 (3):572-606.
    Many recent writers in the philosophy of mathematics have put great weight on the relative categoricity of the traditional axiomatizations of our foundational theories of arithmetic and set theory. Another great enterprise in contemporary philosophy of mathematics has been Wright's and Hale's project of founding mathematics on abstraction principles. In earlier work, it was noted that one traditional abstraction principle, namely Hume's Principle, had a certain relative categoricity property, which here we term natural relative categoricity. In this paper, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Strength of Truth-Theories.Richard Heck - manuscript
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? It turns out that, in a wide range of cases, we can get some nice answers to this question, but only if we work in a framework that is somewhat different from those usually employed in discussions of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Possibility is not consistency.Alexander R. Pruss - 2015 - Philosophical Studies 172 (9):2341-2348.
    We shall use Gödel’s Second Incompleteness Theorem to show that consistency is not possibility, and then argue that the argument does serious damage to some theories of modality where consistency plays a major but not exclusive role.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Truth and speed-up.Martin Fischer - 2014 - Review of Symbolic Logic 7 (2):319-340.
    In this paper, we investigate the phenomenon ofspeed-upin the context of theories of truth. We focus on axiomatic theories of truth extending Peano arithmetic. We are particularly interested on whether conservative extensions of PA have speed-up and on how this relates to a deflationist account. We show that disquotational theories have no significant speed-up, in contrast to some compositional theories, and we briefly assess the philosophical implications of these results.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Plurals.Agustín Rayo - 2007 - Philosophy Compass 2 (3):411–427.
    Forthcoming in Philosophical Compass. I explain why plural quantifiers and predicates have been thought to be philosophically significant.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Consistency of a Plural Theory of Frege’s Grundgesetze.Francesca Boccuni - 2011 - Studia Logica 97 (3):329-345.
    PG (Plural Grundgesetze) is a predicative monadic second-order system which is aimed to derive second-order Peano arithmetic. It exploits the notion of plural quantification and a few Fregean devices, among which the infamous Basic Law V. In this paper, a model-theoretical consistency proof for the system PG is provided.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Notions of Invariance for Abstraction Principles.G. A. Antonelli - 2010 - Philosophia Mathematica 18 (3):276-292.
    The logical status of abstraction principles, and especially Hume’s Principle, has been long debated, but the best currently availeble tool for explicating a notion’s logical character—permutation invariance—has not received a lot of attention in this debate. This paper aims to fill this gap. After characterizing abstraction principles as particular mappings from the subsets of a domain into that domain and exploring some of their properties, the paper introduces several distinct notions of permutation invariance for such principles, assessing the philosophical significance (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.
    Frege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume’s Principle, which says that the number of F s is identical to the number of Gs if and only if the F s and the Gs can be one-to-one correlated. According to Frege’s Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume’s Principle, the other, with the underlying second-order logic—and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • A Puzzle About Ontological Commitments.Philip A. Ebert - 2008 - Philosophia Mathematica 16 (2):209-226.
    This paper raises and then discusses a puzzle concerning the ontological commitments of mathematical principles. The main focus here is Hume's Principle—a statement that, embedded in second-order logic, allows for a deduction of the second-order Peano axioms. The puzzle aims to put pressure on so-called epistemic rejectionism, a position that rejects the analytic status of Hume's Principle. The upshot will be to elicit a new and very basic disagreement between epistemic rejectionism and the neo-Fregeans, defenders of the analytic status of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege meets Brouwer.Stewart Shapiro & Øystein Linnebo - 2015 - Review of Symbolic Logic 8 (3):540-552.
    We show that, by choosing definitions carefully, a version of Frege's theorem can be proved in intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The logical structure of evolutionary explanation and prediction: Darwinism’s fundamental schema.Neil Tennant - 2014 - Biology and Philosophy 29 (5):611-655.
    We present a logically detailed case-study of Darwinian evolutionary explanation. Special features of Darwin’s explanatory schema made it an unusual theoretical breakthrough, from the point of view of the philosophy of science. The schema employs no theoretical terms, and puts forward no theoretical hypotheses. Instead, it uses three observational generalizations—Variability, Heritability and Differential Reproduction—along with an innocuous assumption of Causal Efficacy, to derive Adaptive Evolution as a necessary consequence. Adaptive Evolution in turn, with one assumption of scale (‘Deep Time’), implies (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstraction in Fitch's Basic Logic.Eric Thomas Updike - 2012 - History and Philosophy of Logic 33 (3):215-243.
    Fitch's basic logic is an untyped illative combinatory logic with unrestricted principles of abstraction effecting a type collapse between properties (or concepts) and individual elements of an abstract syntax. Fitch does not work axiomatically and the abstraction operation is not a primitive feature of the inductive clauses defining the logic. Fitch's proof that basic logic has unlimited abstraction is not clear and his proof contains a number of errors that have so far gone undetected. This paper corrects these errors and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mutual interpretability of Robinson arithmetic and adjunctive set theory with extensionality.Zlatan Damnjanovic - 2017 - Bulletin of Symbolic Logic 23 (4):381-404.
    An elementary theory of concatenation,QT+, is introduced and used to establish mutual interpretability of Robinson arithmetic, Minimal Predicative Set Theory, quantifier-free part of Kirby’s finitary set theory, and Adjunctive Set Theory, with or without extensionality. The most basic arithmetic and simplest set theory thus turn out to be variants of string theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Plural Grundgesetze.Francesca Boccuni - 2010 - Studia Logica 96 (2):315-330.
    PG (Plural Grundgesetze) is a predicative monadic second-order system which exploits the notion of plural quantification and a few Fregean devices, among which a formulation of the infamous Basic Law V. It is shown that second-order Peano arithmetic can be derived in PG. I also investigate the philosophical issue of predicativism connected to PG. In particular, as predicativism about concepts seems rather un-Fregean, I analyse whether there is a way to make predicativism compatible with Frege’s logicism.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frege on Number Properties.Andrew D. Irvine - 2010 - Studia Logica 96 (2):239-260.
    In the Grundlagen , Frege offers eight main arguments, together with a series of more minor supporting arguments, against Mill’s view that numbers are “properties of external things”. This paper reviews all eight of these arguments, arguing that none are conclusive.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Breadth of the Paradox.Patricia Blanchette - 2016 - Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reply to critics of the analytic tradition in philosophy vol. 1 the founding giants.Scott Soames - 2015 - Philosophical Studies 172 (6):1681-1696.
    Reply to Beaney: the closing of the historical mindIn his comments, Michael Beaney sets himself up as the arbiter of what is genuine history and what isn’t. While celebrating the outpouring of specialized scholarship on Frege, he has no patience with the enterprise outlined in the Précis, which attempts to construct a large-scale picture of the richness of the analytic tradition. That enterprise is one in which great figures of our recent past are challenged by aspects of contemporary thought, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Burgess' PV Is Robinson's Q.Mihai Ganea - 2007 - Journal of Symbolic Logic 72 (2):619 - 624.
    In [2] John Burgess describes predicative versions of Frege's logic and poses the problem of finding their exact arithmetical strength. I prove here that PV, the simplest such theory, is equivalent to Robinson's arithmetical theory Q.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Frege on definitions.Sanford Shieh - 2008 - Philosophy Compass 3 (5):992-1012.
    This article treats three aspects of Frege's discussions of definitions. First, I survey Frege's main criticisms of definitions in mathematics. Second, I consider Frege's apparent change of mind on the legitimacy of contextual definitions and its significance for recent neo-Fregean logicism. In the remainder of the article I discuss a critical question about the definitions on which Frege's proofs of the laws of arithmetic depend: do the logical structures of the definientia reflect the understanding of arithmetical terms prevailing prior to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Higher‐Order Abstraction Principles.Beau Madison Mount - 2015 - Thought: A Journal of Philosophy 4 (4):228-236.
    I extend theorems due to Roy Cook on third- and higher-order versions of abstraction principles and discuss the philosophical importance of results of this type. Cook demonstrated that the satisfiability of certain higher-order analogues of Hume's Principle is independent of ZFC. I show that similar analogues of Boolos's new v and Cook's own ordinal abstraction principle soap are not satisfiable at all. I argue, however, that these results do not tell significantly against the second-order versions of these principles.
    Download  
     
    Export citation  
     
    Bookmark  
  • Soames on Frege: provoking thoughts. [REVIEW]Michael Beaney - 2015 - Philosophical Studies 172 (6):1651-1660.
    In this symposium contribution I critically review the first two chapters, on Frege, in Volume 1 of The Analytic Tradition in Philosophy by Scott Soames.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fragments of frege’s grundgesetze and gödel’s constructible universe.Sean Walsh - 2016 - Journal of Symbolic Logic 81 (2):605-628.
    Frege's Grundgesetze was one of the 19th century forerunners to contemporary set theory which was plagued by the Russell paradox. In recent years, it has been shown that subsystems of the Grundgesetze formed by restricting the comprehension schema are consistent. One aim of this paper is to ascertain how much set theory can be developed within these consistent fragments of the Grundgesetze, and our main theorem shows that there is a model of a fragment of the Grundgesetze which defines a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Hume’s principle, beginnings.Albert Visser - 2011 - Review of Symbolic Logic 4 (1):114-129.
    In this note we derive Robinson???s Arithmetic from Hume???s Principle in the context of very weak theories of classes and relations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Cardinal arithmetic in the style of Baron Von münchhausen.Albert Visser - 2009 - Review of Symbolic Logic 2 (3):570-589.
    In this paper we show how to interpret Robinson’s arithmetic Q and the theory R of Tarski, Mostowski, and Robinson as theories of cardinals in very weak theories of relations over a domain.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • No class: Russell on contextual definition and the elimination of sets.Scott Soames - 2008 - Philosophical Studies 139 (2):213 - 218.
    The article rebutts Michael Kremer’s contention that Russell’s contextual definition of set-theoretic language in Principia Mathematica constituted the ontological achievement of eliminating commitment to classes. Although Russell’s higher-order quantifiers, used in the definition, need not range over classes, none of the plausible substitutes provide a solid basis for eliminating them. This point is used to defend the presentation, in The Dawn of Analysis, of Russell’s logicist reduction, using a first-order version of naive set theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Neologicism, Frege's Constraint, and the Frege‐Heck Condition.Eric Snyder, Richard Samuels & Stewart Shapiro - 2018 - Noûs 54 (1):54-77.
    One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. In particular, they maintain that, if adopted, Frege’s Constraint adjudicates in favor of their preferred foundation – Hume’s Principle – and against alternatives, such as the Dedekind-Peano axioms. In what follows we establish two main claims. First, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege Meets Zermelo: A Perspective on Ineffability and Reflection.Stewart Shapiro - 2008 - Review of Symbolic Logic 1 (2):241-266.
    1. Philosophical background: iteration, ineffability, reflection. There are at least two heuristic motivations for the axioms of standard set theory, by which we mean, as usual, first-order Zermelo–Fraenkel set theory with the axiom of choice (ZFC): the iterative conception and limitation of size (see Boolos, 1989). Each strand provides a rather hospitable environment for the hypothesis that the set-theoretic universe is ineffable, which is our target in this paper, although the motivation is different in each case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell idea (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Concept grounding and knowledge of set theory.Jeffrey W. Roland - 2010 - Philosophia 38 (1):179-193.
    C. S. Jenkins has recently proposed an account of arithmetical knowledge designed to be realist, empiricist, and apriorist: realist in that what’s the case in arithmetic doesn’t rely on us being any particular way; empiricist in that arithmetic knowledge crucially depends on the senses; and apriorist in that it accommodates the time-honored judgment that there is something special about arithmetical knowledge, something we have historically labeled with ‘a priori’. I’m here concerned with the prospects for extending Jenkins’s account beyond arithmetic—in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)A priori truths.Greg Restall - 2009 - In John Shand (ed.), Central Issues of Philosophy. Malden, MA: Wiley-Blackwell.
    Philosophers love a priori knowledge: we delight in truths that can be known from the comfort of our armchairs, without the need to venture out in the world for confirmation. This is due not to laziness, but to two different considerations. First, it seems that many philosophical issues aren’t settled by our experience of the world — the nature of morality; the way concepts pick out objects; the structure of our experience of the world in which we find ourselves — (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Burgess on Plural Logic and Set Theory.O. Linnebo - 2007 - Philosophia Mathematica 15 (1):79-93.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bernays and set theory.Akihiro Kanamori - 2009 - Bulletin of Symbolic Logic 15 (1):43-69.
    We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higher-order reflection principles.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sir Michael Anthony Eardley Dummett, 1925-2011.R. G. Heck - 2013 - Philosophia Mathematica 21 (1):1-8.
    A remembrance of Dummett's work on philosophy of mathematcis.
    Download  
     
    Export citation  
     
    Bookmark