Switch to: Citations

Add references

You must login to add references.
  1. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.David B. Malament - 2012 - Chicago: Chicago University Press.
    1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (...)
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Foundations and current problems of general relativity (notes by graham dixon, petros florides and gerald lemmer).Andrzej Trautman - 1965 - In A. Trautman (ed.), Lectures on general relativity. Englewood Cliffs, N.J.,: Prentice-Hall. pp. 1--1.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • .Jeremy Butterfield & John Earman - 1977
    Download  
     
    Export citation  
     
    Bookmark   371 citations  
  • The Geometry of Conventionality.James Owen Weatherall & John Byron Manchak - 2014 - Philosophy of Science 81 (2):233-247.
    There is a venerable position in the philosophy of space and time that holds that the geometry of spacetime is conventional, provided one is willing to postulate a “universal force field.” Here we ask a more focused question, inspired by this literature: in the context of our best classical theories of space and time, if one understands “force” in the standard way, can one accommodate different geometries by postulating a new force field? We argue that the answer depends on one’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • World enough and space‐time: Absolute versus relational theories of space and time.Robert Toretti & John Earman - 1989 - Philosophical Review 101 (3):723.
    Download  
     
    Export citation  
     
    Bookmark   288 citations  
  • Rethinking Newton’s Principia.Simon Saunders - 2013 - Philosophy of Science 80 (1):22-48.
    It is widely accepted that the notion of an inertial frame is central to Newtonian mechanics and that the correct space-time structure underlying Newton’s methods in Principia is neo-Newtonian or Galilean space-time. I argue to the contrary that inertial frames are not needed in Newton’s theory of motion, and that the right space-time structure for Newton’s Principia requires the notion of parallelism of spatial directions at different times and nothing more. Only relative motions are definable in this framework, never absolute (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Newtonian Spacetime Structure in Light of the Equivalence Principle.Eleanor Knox - 2014 - British Journal for the Philosophy of Science 65 (4):863-880.
    I argue that the best spacetime setting for Newtonian gravitation (NG) is the curved spacetime setting associated with geometrized Newtonian gravitation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads us to conclude that the gravitational field in NG itself is a gauge quantity, and that the freely falling frames are naturally identified with inertial frames. In this context, the spacetime structure of NG is represented not by the flat neo-Newtonian connection usually made explicit in formulations, but by the sum of (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • A no-go theorem about rotation in relativity theory.David B. Malament - unknown
    Within the framework of general relativity, in some cases at least, it is a delicate and interesting question just what it means to say that an extended body is or is not "rotating". It is so for two reasons. First, one can easily think of different criteria of rotation. Though they agree if the background spacetime structure is sufficiently simple, they do not do so in general. Second, none of the criteria fully answers to our classical intuitions. Each one exhibits (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Newtonian space-time.Howard Stein - 1967 - Texas Quarterly 10 (3):174--200.
    Download  
     
    Export citation  
     
    Bookmark   124 citations