Switch to: References

Citations of:

Foundations and current problems of general relativity (notes by graham dixon, petros florides and gerald lemmer)

In A. Trautman (ed.), Lectures on general relativity. Englewood Cliffs, N.J.,: Prentice-Hall. pp. 1--1 (1965)

Add citations

You must login to add citations.
  1. (1 other version)Part 1: Theoretical equivalence in physics.James Owen Weatherall - 2019 - Philosophy Compass 14 (5):e12592.
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and “interpretational” equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including (generalized) definitional (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Geometric Objects and Perspectivalism.James Read - 2022 - In James Read & Nicholas J. Teh (eds.), The Philosophy and Physics of Noether's Theorems. Cambridge University Press. pp. 257-273.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Would two dimensions be world enough for spacetime?Samuel C. Fletcher, J. B. Manchak, Mike D. Schneider & James Owen Weatherall - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:100-113.
    We consider various curious features of general relativity, and relativistic field theory, in two spacetime dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newtonian limit; the status of the cosmological constant; and the character of matter fields, including perfect fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of physics in different dimensions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Maxwell Gravitation.Neil Dewar - 2018 - Philosophy of Science 85 (2):249-270.
    This article gives an explicit presentation of Newtonian gravitation on the backdrop of Maxwell space-time, giving a sense in which acceleration is relative in gravitational theory. However, caution is needed: assessing whether this is a robust or interesting sense of the relativity of acceleration depends on some subtle technical issues and on substantive philosophical questions over how to identify the space-time structure of a theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Conservation, inertia, and spacetime geometry.James Owen Weatherall - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:144-159.
    As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the "conservation condition", which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Why Einstein did not believe that general relativity geometrizes gravity.Dennis Lehmkuhl - unknown
    I argue that, contrary to folklore, Einstein never really cared for geometrizing the gravitational or the electromagnetic field; indeed, he thought that the very statement that General Relativity geometrizes gravity "is not saying anything at all". Instead, I shall show that Einstein saw the "unification" of inertia and gravity as one of the major achievements of General Relativity. Interestingly, Einstein did not locate this unification in the field equations but in his interpretation of the geodesic equation, the law of motion (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Fiber bundles, Yang–Mills theory, and general relativity.James Owen Weatherall - 2016 - Synthese 193 (8).
    I articulate and discuss a geometrical interpretation of Yang–Mills theory. Analogies and disanalogies between Yang–Mills theory and general relativity are also considered.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • What Is a Singularity in Geometrized Newtonian Gravitation?James Owen Weatherall - 2014 - Philosophy of Science 81 (5):1077-1089.
    I discuss singular space-times in the context of the geometrized formulation of Newtonian gravitation. I argue first that geodesic incompleteness is a natural criterion for when a model of geometrized Newtonian gravitation is singular, and then I show that singularities in this sense arise naturally in classical physics by stating and proving a classical version of the Raychaudhuri-Komar singularity theorem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Theories of gravitation with nonminimal coupling of matter and the gravitational field.H. F. M. Goenner - 1984 - Foundations of Physics 14 (9):865-881.
    The foundations of a theory of nonminimal coupling of matter and the gravitational field in the framework of Riemannian (or Riemann-Cartan) geometry are presented. In the absence of matter, the Einstein vacuum field equations hold. In order to allow for a Newtonian limit, the theory contains a new parameter l0 of dimension length. For systems with finite total mass, l0 is set equal to the Schwarzschild radius.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Newton–Cartan theory and teleparallel gravity: The force of a formulation.Eleanor Knox - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (4):264-275.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On (Some) Explanations in Physics.James Owen Weatherall - 2011 - Philosophy of Science 78 (3):421-447.
    I offer an explanation of why inertial and gravitational mass are equal in Newtonian gravitation. I then argue that this is an example of a kind of explanation that is not captured by standard philosophical accounts of scientific explanation. Moreover, this form of explanation is particularly important, at least in physics, because demands for this kind of explanation are used to motivate and shape research into the next generation of physical theories. I suggest that explanations of the sort I describe (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Who's afraid of absolute space?John Earman - 1970 - Australasian Journal of Philosophy 48 (3):287-319.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Gauge-invariant localization of infinitely many gravitational energies from all possible auxiliary structures.J. Brian Pitts - unknown
    The problem of finding a covariant expression for the distribution and conservation of gravitational energy-momentum dates to the 1910s. A suitably covariant infinite-component localization is displayed, reflecting Bergmann's realization that there are infinitely many gravitational energy-momenta. Initially use is made of a flat background metric (or rather, all of them) or connection, because the desired gauge invariance properties are obvious. Partial gauge-fixing then yields an appropriate covariant quantity without any background metric or connection; one version is the collection of pseudotensors (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Motivating dualities.James Read & Thomas Møller-Nielsen - 2020 - Synthese 197 (1):263-291.
    There exists a common view that for theories related by a ‘duality’, dual models typically may be taken ab initio to represent the same physical state of affairs, i.e. to correspond to the same possible world. We question this view, by drawing a parallel with the distinction between ‘interpretational’ and ‘motivational’ approaches to symmetries.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)Part 2: Theoretical equivalence in physics.James Owen Weatherall - 2019 - Philosophy Compass 14 (5):e12591.
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and “interpretational” equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including (generalized) definitional (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Equivalent Theories Redefine Hamiltonian Observables to Exhibit Change in General Relativity.J. Brian Pitts - unknown
    Change and local spatial variation are missing in canonical General Relativity's observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie-Proca (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Underconsideration in Space-time and Particle Physics.J. Brian Pitts - unknown
    The idea that a serious threat to scientific realism comes from unconceived alternatives has been proposed by van Fraassen, Sklar, Stanford and Wray among others. Peter Lipton's critique of this threat from underconsideration is examined briefly in terms of its logic and its applicability to the case of space-time and particle physics. The example of space-time and particle physics indicates a generic heuristic for quantitative sciences for constructing potentially serious cases of underdetermination, involving one-parameter family of rivals T_m that work (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Towards a Theory of Spacetime Theories.Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.) - 2016 - New York, NY: Birkhauser.
    This contributed volume is the result of a July 2010 workshop at the University of Wuppertal Interdisciplinary Centre for Science and Technology Studies which brought together world-wide experts from physics, philosophy and history, in order to address a set of questions first posed in the 1950s: How do we compare spacetime theories? How do we judge, objectively, which is the “best” theory? Is there even a unique answer to this question? -/- The goal of the workshop, and of this book, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Einstein's Role in the Creation of Relativistic Cosmology.Chris Smeenk - 2014 - In Michel Janssen & Christoph Lehner (eds.), The Cambridge Companion to Einstein. Cambridge University Press. pp. 228-269.
    This volume is the first systematic presentation of the work of Albert Einstein, comprising fourteen essays by leading historians and philosophers of science that introduce readers to his work. Following an introduction that places Einstein's work in the context of his life and times, the book opens with essays on the papers of Einstein's 'miracle year', 1905, covering Brownian motion, light quanta, and special relativity, as well as his contributions to early quantum theory and the opposition to his light quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Weyl-Type Theorem for Geometrized Newtonian Gravity.Erik Curiel - unknown
    I state and prove, in the context of a space having only the metrical structure imposed by the geometrized version of Newtonian gravitational theory, a theorem analagous to that of Weyl's in a Lorentzian space. The theorem, loosely speaking, says that a projective structure and a suitably defined compatible conformal structure on such a space jointly suffice for fixing the metrical structure of a Newtonian spacetime model up to constant factors. It allows one to give a natural, physically compelling interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Space–time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:73-92.
    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times.James Owen Weatherall - 2016 - Philosophy of Science 83 (1):82-92.
    I address a question recently raised by Simon Saunders concerning the relationship between the space-time structure of Newton-Cartan theory and that of what I will call “Maxwell-Huygens space-time.” This discussion will also clarify a connection between Saunders’s work and a recent paper by Eleanor Knox.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A Primer on Energy Conditions.Erik Curiel - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 43-104.
    An energy condition, in the context of a wide class of spacetime theories, is, crudely speaking, a relation one demands the stress-energy tensor of matter satisfy in order to try to capture the idea that "energy should be positive". The remarkable fact I will discuss in this paper is that such simple, general, almost trivial seeming propositions have profound and far-reaching import for our understanding of the structure of relativistic spacetimes. It is therefore especially surprising when one also learns that (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Essay Review of David Malament, Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.John Byron Manchak - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Motion of a Body in Newtonian Theories.James Owen Weatherall - 2011 - Journal of Mathematical Physics 52 (3):032502.
    A theorem due to Bob Geroch and Pong Soo Jang [“Motion of a Body in General Relativity.” Journal of Mathematical Physics 16, ] provides the sense in which the geodesic principle has the status of a theorem in General Relativity. Here we show that a similar theorem holds in the context of geometrized Newtonian gravitation. It follows that in Newtonian gravitation, as in GR, inertial motion can be derived from other central principles of the theory.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The relevance of irrelevance: Absolute objects and the Jones-Geroch dust velocity counterexample, with a note on spinors.J. Brian Pitts - unknown
    James L. Anderson analyzed the conceptual novelty of Einstein's theory of gravity as its lack of ``absolute objects.'' Michael Friedman's related concept of absolute objects has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using Nathan Rosen's action principle, I complete Anna Maidens's argument that the Jones-Geroch problem is not solved by requiring that absolute objects not be varied. Recalling Anderson's proscription of (globally) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The meaning and status of Newton's law of inertia and the nature of gravitational forces.J. Earman & M. Friedman - 1973 - Philosophy of Science 40 (3):329-359.
    A four dimensional approach to Newtonian physics is used to distinguish between a number of different structures for Newtonian space-time and a number of different formulations of Newtonian gravitational theory. This in turn makes possible an in-depth study of the meaning and status of Newton's Law of Inertia and a detailed comparison of the Newtonian and Einsteinian versions of the Law of Inertia and the Newtonian and Einsteinian treatments of gravitational forces. Various claims about the status of Newton's Law of (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Gravitational Energy in Newtonian Gravity: A Response to Dewar and Weatherall.Patrick M. Duerr & James Read - 2019 - Foundations of Physics 49 (10):1086-1110.
    The paper investigates the status of gravitational energy in Newtonian Gravity, developing upon recent work by Dewar and Weatherall. The latter suggest that gravitational energy is a gauge quantity. This is potentially misleading: its gauge status crucially depends on the spacetime setting one adopts. In line with Møller-Nielsen’s plea for a motivational approach to symmetries, we supplement Dewar and Weatherall’s work by discussing gravitational energy–stress in Newtonian spacetime, Galilean spacetime, Maxwell-Huygens spacetime, and Newton–Cartan Theory. Although we ultimately concur with Dewar (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Theories of Newtonian gravity and empirical indistinguishability.Jonathan Bain - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):345-376.
    In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a ‘‘weak’’ version and a ‘‘strong’’ version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Categories and the Foundations of Classical Field Theories.James Owen Weatherall - 2017 - In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press.
    I review some recent work on applications of category theory to questions concerning theoretical structure and theoretical equivalence of classical field theories, including Newtonian gravitation, general relativity, and Yang-Mills theories.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Inertial motion, explanation, and the foundations of classical spacetime theories.James Owen Weatherall - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 13-42.
    I begin by reviewing some recent work on the status of the geodesic principle in general relativity and the geometrized formulation of Newtonian gravitation. I then turn to the question of whether either of these theories might be said to ``explain'' inertial motion. I argue that there is a sense in which both theories may be understood to explain inertial motion, but that the sense of ``explain'' is rather different from what one might have expected. This sense of explanation is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The nontriviality of trivial general covariance: How electrons restrict 'time' coordinates, spinors (almost) fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
    It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Is there a relativistic thermodynamics? A case study of the meaning of special relativity.Chuang Liu - 1994 - Studies in History and Philosophy of Science Part A 25 (6):983-1004.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A limited conventionalist critique of Newtonian space-time.David Zaret - 1980 - Philosophy of Science 47 (3):474-494.
    In this paper, I examine a number of alternative global structures for Newtonian space-time, and corresponding Newtonian theories of mechanics and gravitation. I argue that since these theories differ only with respect to questions concerning the relative distribution of inertial and gravitational forces, the choice between them is a matter of convention. Therefore, the global structure of Newtonian space-time is also a matter of convention. Since this result is based on a consideration of the nature of inertial and gravitational forces, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Against ‘functional gravitational energy’: a critical note on functionalism, selective realism, and geometric objects and gravitational energy.Patrick M. Duerr - 2019 - Synthese 199 (S2):299-333.
    The present paper revisits the debate between realists about gravitational energy in GR and anti-realists/eliminativists. I re-assess the arguments underpinning Hoefer’s seminal eliminativist stance, and those of their realist detractors’ responses. A more circumspect reading of the former is proffered that discloses where the so far not fully appreciated, real challenges lie for realism about gravitational energy. I subsequently turn to Lam and Read’s recent proposals for such a realism. Their arguments are critically examined. Special attention is devoted to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Gravitational Energy in Newtonian Theories.Neil Dewar & James Owen Weatherall - 2018 - Foundations of Physics 48 (5):558-578.
    There are well-known problems associated with the idea of gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation. We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized theory without introducing further structure. We then address a potential response by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the status of the geodesic principle in Newtonian and relativistic physics.James Owen Weatherall - 2011 - Studies in History and Philosophy of Science Part A 42 (4):276-281.
    A theorem due to Bob Geroch and Pong Soo Jang ["Motion of a Body in General Relativity." Journal of Mathematical Physics 16, ] provides a sense in which the geodesic principle has the status of a theorem in General Relativity. I have recently shown that a similar theorem holds in the context of geometrized Newtonian gravitation [Weatherall, J. O. "The Motion of a Body in Newtonian Theories." Journal of Mathematical Physics 52, ]. Here I compare the interpretations of these two (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Coordinate-Independent 2-Component Spinor Formalism and the Conventionality of Simultaneity.Jonathan Bain - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (2):201-226.
    In recent articles, Zangari (1994) and Karakostas (1997) observe that while an &unknown;-extended version of the proper orthochronous Lorentz group O + (1,3) exists for values of &unknown; not equal to zero, no similar &unknown;-extended version of its double covering group SL(2, C) exists (where &unknown;=1-2&unknown; R , with &unknown; R the non-standard simultaneity parameter of Reichenbach). Thus, they maintain, since SL(2, C) is essential in describing the rotational behaviour of half-integer spin fields, and since there is empirical evidence for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classical relativity theory.David Malament - 2006 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Amsterdam and Boston: Elsevier.
    This survey article is divided into two parts. In the first (section 2), I give a brief account of the structure of classical relativity theory. In the second (section 3), I discuss three special topics: (i) the status of the relative simultaneity relation in the context of Minkowski spacetime; (ii) the ``geometrized" version of Newtonian gravitation theory (also known as Newton-Cartan theory); and (iii) the possibility of recovering the global geometric structure of spacetime from its ``causal structure".
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The physical significance of symmetries from the perspective of conservation laws.Adan Sus - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 267-285.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Theoretical Equivalence in Physics.James Owen Weatherall - unknown
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and "interpretational" equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including definitional equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Time and Fermions: General Covariance vs. Ockham's Razor for Spinors.J. Brian Pitts - unknown
    It is a commonplace in the foundations of physics, attributed to Kretschmann, that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics and mathematics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical Spacetime Structure.James Owen Weatherall - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss several issues related to "classical" spacetime structure. I review Galilean, Newtonian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The teleparallel equivalent of Newton–Cartan gravity.James Read & Nicholas Teh - unknown
    We construct a notion of teleparallelization for Newton-Cartan theory, and show that the teleparallel equivalent of this theory is Newtonian gravity; furthermore, we show that this result is consistent with teleparallelization in general relativity, and can be obtained by null-reducing the teleparallel equivalent of a five-dimensional gravitational wave solution. This work thus strengthens substantially the connections between four theories: Newton-Cartan theory, Newtonian gravitation theory, general relativity, and teleparallel gravity.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Absolute space and conventionalism.David Zaret - 1979 - British Journal for the Philosophy of Science 30 (3):211-226.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Permanent Underdetermination from Approximate Empirical Equivalence in Field Theory: Massless and Massive Scalar Gravity, Neutrino, Electromagnetic, Yang–Mills and Gravitational Theories.J. Brian Pitts - 2010 - British Journal for the Philosophy of Science 62 (2):259-299.
    Classical and quantum field theory provide not only realistic examples of extant notions of empirical equivalence, but also new notions of empirical equivalence, both modal and occurrent. A simple but modern gravitational case goes back to the 1890s, but there has been apparently total neglect of the simplest relativistic analog, with the result that an erroneous claim has taken root that Special Relativity could not have accommodated gravity even if there were no bending of light. The fairly recent acceptance of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics.J. Brian Pitts - 2018 - Erkenntnis 83 (2):135-161.
    Kantian philosophy of space, time and gravity is significantly affected in three ways by particle physics. First, particle physics deflects Schlick’s General Relativity-based critique of synthetic a priori knowledge. Schlick argued that since geometry was not synthetic a priori, nothing was—a key step toward logical empiricism. Particle physics suggests a Kant-friendlier theory of space-time and gravity presumably approximating General Relativity arbitrarily well, massive spin-2 gravity, while retaining a flat space-time geometry that is indirectly observable at large distances. The theory’s roots (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Newtonian Spacetime Structure in Light of the Equivalence Principle.Eleanor Knox - 2014 - British Journal for the Philosophy of Science 65 (4):863-880.
    I argue that the best spacetime setting for Newtonian gravitation (NG) is the curved spacetime setting associated with geometrized Newtonian gravitation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads us to conclude that the gravitational field in NG itself is a gauge quantity, and that the freely falling frames are naturally identified with inertial frames. In this context, the spacetime structure of NG is represented not by the flat neo-Newtonian connection usually made explicit in formulations, but by the sum of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations