- “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.details
|
|
When Doctors and AI Interact: on Human Responsibility for Artificial Risks.Mario Verdicchio & Andrea Perin - 2022 - Philosophy and Technology 35 (1):1-28.details
|
|
(1 other version)How to design a governable digital health ecosystem.Jessica Morley & Luciano Floridi - manuscriptdetails
|
|
(1 other version)Trusting artificial intelligence in cybersecurity is a double-edged sword.Mariarosaria Taddeo, Tom McCutcheon & Luciano Floridi - 2019 - Philosophy and Technology 32 (1):1-15.details
|
|
What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.details
|
|
How to design AI for social good: seven essential factors.Luciano Floridi, Josh Cowls, Thomas C. King & Mariarosaria Taddeo - 2020 - Science and Engineering Ethics 26 (3):1771–1796.details
|
|
High hopes for “Deep Medicine”? AI, economics, and the future of care.Robert Sparrow & Joshua Hatherley - 2020 - Hastings Center Report 50 (1):14-17.details
|
|
Artificial Intelligence and Patient-Centered Decision-Making.Jens Christian Bjerring & Jacob Busch - 2020 - Philosophy and Technology 34 (2):349-371.details
|
|
The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence.David Watson - 2019 - Minds and Machines 29 (3):417-440.details
|
|
(1 other version)What the near future of artificial intelligence could be.Luciano Floridi - 2019 - Philosophy and Technology 32 (1):1-15.details
|
|
Allure of Simplicity.Thomas Grote - 2023 - Philosophy of Medicine 4 (1).details
|
|
(2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–32.details
|
|
Are AI systems biased against the poor? A machine learning analysis using Word2Vec and GloVe embeddings.Georgina Curto, Mario Fernando Jojoa Acosta, Flavio Comim & Begoña Garcia-Zapirain - forthcoming - AI and Society:1-16.details
|
|
What’s in the Box?: Uncertain Accountability of Machine Learning Applications in Healthcare.Ma'N. Zawati & Michael Lang - 2020 - American Journal of Bioethics 20 (11):37-40.details
|
|
Accountability in the Machine Learning Pipeline: The Critical Role of Research Ethics Oversight.Melissa D. McCradden, James A. Anderson & Randi Zlotnik Shaul - 2020 - American Journal of Bioethics 20 (11):40-42.details
|
|
Conceptual challenges for interpretable machine learning.David S. Watson - 2022 - Synthese 200 (2):1-33.details
|
|