Results for 'Escherichia coli'

15 found
Order:
  1.  78
    Integrating evolutionary aspects into dual-use discussion: the cases of influenza virus and enterohemorrhagic Escherichia coli.Ozan Altan Altinok - 2021 - Evolution, Medicine and Public Health 9 (1):383 - 392.
    Research in infection biology aims to understand the complex nature of host–pathogen interactions. While this knowledge facilitates strategies for preventing and treating diseases, it can also be intentionally misused to cause harm. Such dual-use risk is potentially high for highly pathogenic microbes such as Risk Group-3 (RG3) bacteria and RG4 viruses, which could be used in bioterrorism attacks. However, other pathogens such as influenza virus (IV) and enterohemorrhagic Escherichia coli (EHEC), usually classified as RG2 pathogens, also demonstrate high (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Control Mechanisms: Explaining the Integration and Versatility of Biological Organisms.Leonardo Bich & William Bechtel - 2022 - Adaptive Behavior.
    Living organisms act as integrated wholes to maintain themselves. Individual actions can each be explained by characterizing the mechanisms that perform the activity. But these alone do not explain how various activities are coordinated and performed versatilely. We argue that this depends on a specific type of mechanism, a control mechanism. We develop an account of control by examining several extensively studied control mechanisms operative in the bacterium E. coli. On our analysis, what distinguishes a control mechanism from other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  3. The Protein Ontology: A structured representation of protein forms and complexes.Darren Natale, Cecilia N. Arighi, Winona C. Barker, Judith A. Blake, Carol J. Bult, Michael Caudy, Harold J. Drabkin, Peter D’Eustachio, Alexei V. Evsikov, Hongzhan Huang, Jules Nchoutmboube, Natalia V. Roberts, Barry Smith, Jian Zhang & Cathy H. Wu - 2011 - Nucleic Acids Research 39 (1):D539-D545.
    The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4. Strategies of Explanatory Abstraction in Molecular Systems Biology.Nicholaos Jones - 2018 - Philosophy of Science 85 (5):955-968.
    I consider three explanatory strategies from recent systems biology that are driven by mathematics as much as mechanistic detail. Analysis of differential equations drives the first strategy; topological analysis of network motifs drives the second; mathematical theorems from control engineering drive the third. I also distinguish three abstraction types: aggregations, which simplify by condensing information; generalizations, which simplify by generalizing information; and structurations, which simplify by contextualizing information. Using a common explanandum as reference point—namely, the robust perfect adaptation of chemotaxis (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Mechanist idealisation in systems biology.Dingmar van Eck & Cory Wright - 2020 - Synthese 199 (1-2):1555-1575.
    This paper adds to the philosophical literature on mechanistic explanation by elaborating two related explanatory functions of idealisation in mechanistic models. The first function involves explaining the presence of structural/organizational features of mechanisms by reference to their role as difference-makers for performance requirements. The second involves tracking counterfactual dependency relations between features of mechanisms and features of mechanistic explanandum phenomena. To make these functions salient, we relate our discussion to an exemplar from systems biological research on the mechanism for countering (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Fisiologia e Patologias do Puerpério na Reprodução de Bovinos.Emanuel Isaque Cordeiro da Silva & Emanuel Isaque da Silva - manuscript
    PUERPÉRIO EM BOVINOS -/- INTRODUÇÃO -/- O puerpério é definido como o período entre o parto e a apresentação do primeiro estro fértil. Dois processos ocorrem durante o puerpério: a involução uterina e o início da atividade ovariana pós-parto. Em vacas leiteiras, os cuidados médicos pós-parto são essenciais nos programas de manejo, uma vez que as patologias uterinas são diagnosticadas e tratadas nesse período para que a vaca esteja em ótimas condições para ser inseminada, uma vez terminado o período de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Identification of possible differences in coding and non coding fragments of DNA sequences by using the method of the Recurrence Quantification Analysis.Sergio Conte, Alessandro Giuliani & Elio Conte - 2012 - Journal of Research and Review in Applied Science 13 (2):1-28.
    Starting with the results of Li et al. in 1992 there is valuable interest in finding long range correlations in DNA sequences since it raises questions about the role of introns and intron-containing genes. In the present paper we studied two sequences that are the human T-cell receptor alpha/delta locus, Gen-Bank name HUMTCRADCV, a noncoding chromosomal fragment of M = 97630 bases (composed of less than 10% of coding regions), and the Escherichia Coli K12, Gen-Bank name ECO110K, a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Making sense of ‘genetic programs’: biomolecular Post–Newell production systems.Mihnea Capraru - 2024 - Biology and Philosophy 39 (2):1-12.
    The biomedical literature makes extensive use of the concept of a genetic program. So far, however, the nature of genetic programs has received no satisfactory elucidation from the standpoint of computer science. This unsettling omission has led to doubts about the very existence of genetic programs, on the grounds that gene regulatory networks lack a predetermined schedule of execution, which may seem to contradict the very idea of a program. I show, however, that we can make perfect sense of genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Reengineering Metaphysics: Modularity, Parthood, and Evolvability in Metabolic Engineering.Catherine Kendig & Todd T. Eckdahl - 2017 - Philosophy, Theory, and Practice in Biology 9 (8).
    The premise of biological modularity is an ontological claim that appears to come out of practice. We understand that the biological world is modular because we can manipulate different parts of organisms in ways that would only work if there were discrete parts that were interchangeable. This is the foundation of the BioBrick assembly method widely used in synthetic biology. It is one of a number of methods that allows practitioners to construct and reconstruct biological pathways and devices using DNA (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Prediction in selectionist evolutionary theory.Rasmus Gr⊘Nfeldt Winther - 2009 - Philosophy of Science 76 (5):889-901.
    Selectionist evolutionary theory has often been faulted for not making novel predictions that are surprising, risky, and correct. I argue that it in fact exhibits the theoretical virtue of predictive capacity in addition to two other virtues: explanatory unification and model fitting. Two case studies show the predictive capacity of selectionist evolutionary theory: parallel evolutionary change in E. coli, and the origin of eukaryotic cells through endosymbiosis.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Model Organisms for Studying Decision-Making: A Phylogenetically Expanded Perspective.Linus Ta-Lun Huang, Leonardo Bich & William Bechtel - 2021 - Philosophy of Science 88 (5):1055-1066.
    This article explores the use of model organisms in studying the cognitive phenomenon of decision-making. Drawing on the framework of biological control to develop a skeletal conception of decision-making, we show that two core features of decision-making mechanisms can be identified by studying model organisms, such as E. coli, jellyfish, C. elegans, lamprey, and so on. First, decision mechanisms are distributed and heterarchically structured. Second, they depend heavily on chemical information processing, such as that involving neuromodulators. We end by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed to quantitatively (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The Structural Basis for Kinetic and Allosteric Differences between Two Bacterial Phosphofructokinases.W. Malcolm Byrnes - 1994 - Dissertation,
    The fructose 6-phosphate (Fru-6P) saturation curve for phosphofructokinase (PFK) from E. coli is sigmoidal in the presence of saturating MgATP levels, while the corresponding curve for B. stearothermophilus PFK is essentially hyperbolic. Sigmoidality can be due to apparent cooperativity arising from the kinetic mechanism of an enzyme. We have determined the kinetic mechanism of B. stearothermophilus PFK (BsPFK). BsPFK was found to obey a non rapid-equilibrium random mechanism similar to the one E. coli PFK (EcPFK) follows. Substrate inhibition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The significances of bacterial colony patterns.James A. Shapiro - 1995 - Bioessays 17 (7):597-607.
    Bacteria do many things as organized populations. We have recently learned much about the molecular basis of intercellular communication among prokaryotes. Colonies display bacterial capacities for multicellular coordination which can be useful in nature where bacteria predominantly grow as films, chains, mats and colonies. E. coli colonies are organized into differentiated non-clonal populations and undergo complex morphogenesis. Multicellularity regulates many aspects of bacterial physiology, including DNA rearrangement systems. In some bacterial species, colony development involves swarming (active migration of cell (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Complex Systems Biology.Roberto Serra - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. pp. 100-107.
    The term “Complex Systems Biology” was introduced a few years ago [Kaneko, 2006] and, although not yet of widespread use, it seems particularly well suited to indicate an approach to biology which is well rooted in complex systems science. Although broad generalizations are always dangerous, it is safe to state that mainstream biology has been largely dominated by a gene-centric view in the last decades, due to the success of molecular biology. So the one gene - one trait approch, which (...)
    Download  
     
    Export citation  
     
    Bookmark