Switch to: References

Add citations

You must login to add citations.
  1. Representing Mental Functioning: Ontologies for Mental Health and Disease.Janna Hastings, Werner Ceusters, Mark Jensen, Kevin Mulligan & Barry Smith - 2012 - In Towards an Ontology of Mental Functioning (ICBO Workshop), Proceeedings of the Third International Conference on Biomedical Ontology.
    Mental and behavioral disorders represent a significant portion of the public health burden in all countries. The human cost of these disorders is immense, yet treatment options for sufferers are currently limited, with many patients failing to respond sufficiently to available interventions and drugs. High quality ontologies facilitate data aggregation and comparison across different disciplines, and may therefore speed up the translation of primary research into novel therapeutics. Realism-based ontologies describe entities in reality and the relationships between them in such (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Protein Ontology: Enhancing and Scaling Up the Representation of Protein Entities.Darren A. Natale, Cecilia N. Arighi, Judith A. Blake, Jonathan Bona, Chuming Chen, Sheng-Chih Chen, Karen R. Christie, Julie Cowart, Peter D'Eustachio, Alexander D. Diehl, Harold J. Drabkin, William D. Duncan, Hongzhan Huang, Jia Ren, Karen Ross & Alan Ruttenberg - 2017 - Nucleic Acids Research 45 (D1):D339-D346.
    The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Representation of Protein Complexes in the Protein Ontology.Carol Bult, Harold Drabkin, Alexei Evsikov, Darren Natale, Cecilia Arighi, Natalia Roberts, Alan Ruttenberg, Peter D’Eustachio, Barry Smith, Judith Blake & Cathy Wu - 2011 - BMC Bioinformatics 12 (371):1-11.
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Protein Ontology: A Controlled Structured Network of Protein Entities.A. Natale Darren, N. Arighi Cecilia, A. Blake Judith, J. Bult Carol, R. Christie Karen, Cowart Julie, D’Eustachio Peter, D. Diehl Alexander, J. Drabkin Harold, Helfer Olivia, Barry Smith & Others - 2013 - Nucleic Acids Research 42 (1):D415-21..
    The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Non-Coding RNA Ontology : A Comprehensive Resource for the Unification of Non-Coding RNA Biology.Huang Jingshan, Eilbeck Karen, Barry Smith, A. Blake Judith, Dou Dejing, Huang Weili, A. Natale Darren, Ruttenberg Alan, Huan Jun & T. Zimmermann Michael - 2016 - Journal of Biomedical Semantics 7 (1).
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Domain Ontology for the Non-Coding RNA Field.Jingshan Huang, Karen Eilbeck, Judith A. Blake, Dejing Dou, Darren A. Natale, Alan Ruttenberg, Barry Smith, Michael T. Zimmermann, Guoqian Jiang & Yu Lin - 2015 - In IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2015). pp. 621-624.
    Identification of non-coding RNAs (ncRNAs) has been significantly enhanced due to the rapid advancement in sequencing technologies. On the other hand, semantic annotation of ncRNA data lag behind their identification, and there is a great need to effectively integrate discovery from relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a precisely defined ncRNA controlled vocabulary, which can fill a specific and highly needed niche in unification of ncRNA biology.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Semantic Approach for Knowledge Capture of microRNA-Target Gene Interactions.Jingshan Huang, Fernando Gutierrez, Dejing Dou, Judith A. Blake, Karen Eilbeck, Darren A. Natale, Barry Smith, Yu Lin, Xiaowei Wang & Zixing Liu - 2015 - In IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2015),. pp. 975-982.
    Research has indicated that microRNAs (miRNAs), a special class of non-coding RNAs (ncRNAs), can perform important roles in different biological and pathological processes. miRNAs’ functions are realized by regulating their respective target genes (targets). It is thus critical to identify and analyze miRNA-target interactions for a better understanding and delineation of miRNAs’ functions. However, conventional knowledge discovery and acquisition methods have many limitations. Fortunately, semantic technologies that are based on domain ontologies can render great assistance in this regard. In our (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classifying Processes: An Essay in Applied Ontology.Barry Smith - 2012 - Ratio 25 (4):463-488.
    We begin by describing recent developments in the burgeoning discipline of applied ontology, focusing especially on the ways ontologies are providing a means for the consistent representation of scientific data. We then introduce Basic Formal Ontology (BFO), a top-level ontology that is serving as domain-neutral framework for the development of lower level ontologies in many specialist disciplines, above all in biology and medicine. BFO is a bicategorial ontology, embracing both three-dimensionalist (continuant) and four-dimensionalist (occurrent) perspectives within a single framework. We (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations