The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results of protein (...) research. PRO (http://pir.georgetown.edu/pro) is part of the Open Biomedical Ontologies (OBO) Foundry. (shrink)
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that (...) has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. (shrink)
Research has indicated that microRNAs (miRNAs), a special class of non-coding RNAs (ncRNAs), can perform important roles in different biological and pathological processes. miRNAs’ functions are realized by regulating their respective target genes (targets). It is thus critical to identify and analyze miRNA-target interactions for a better understanding and delineation of miRNAs’ functions. However, conventional knowledge discovery and acquisition methods have many limitations. Fortunately, semantic technologies that are based on domain ontologies can render great assistance in this regard. In our (...) previous investigations, we developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), to provide the community with common data elements and data exchange standards in the miRNA research. This paper describes (1) our continuing efforts in the OMIT ontology development and (2) the application of the OMIT to enable a semantic approach for knowledge capture of miRNA-target interactions. (shrink)
Identification of non-coding RNAs (ncRNAs) has been significantly enhanced due to the rapid advancement in sequencing technologies. On the other hand, semantic annotation of ncRNA data lag behind their identification, and there is a great need to effectively integrate discovery from relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a precisely defined ncRNA controlled vocabulary, which can fill a specific and highly needed niche in unification of ncRNA biology.
The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification (...) reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.