Order:
See also
Katie Steele
Australian National University
  1. Climate Models, Calibration, and Confirmation.Katie Steele & Charlotte Werndl - 2013 - British Journal for the Philosophy of Science 64 (3):609-635.
    We argue that concerns about double-counting—using the same evidence both to calibrate or tune climate models and also to confirm or verify that the models are adequate—deserve more careful scrutiny in climate modelling circles. It is widely held that double-counting is bad and that separate data must be used for calibration and confirmation. We show that this is far from obviously true, and that climate scientists may be confusing their targets. Our analysis turns on a Bayesian/relative-likelihood approach to incremental confirmation. (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  2. The Problem of Evaluating Automated Large-Scale Evidence Aggregators.Nicolas Wüthrich & Katie Steele - 2019 - Synthese (8):3083-3102.
    In the biomedical context, policy makers face a large amount of potentially discordant evidence from different sources. This prompts the question of how this evidence should be aggregated in the interests of best-informed policy recommendations. The starting point of our discussion is Hunter and Williams’ recent work on an automated aggregation method for medical evidence. Our negative claim is that it is far from clear what the relevant criteria for evaluating an evidence aggregator of this sort are. What is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Model-Selection Theory: The Need for a More Nuanced Picture of Use-Novelty and Double-Counting.Katie Steele & Charlotte Werndl - 2016 - British Journal for the Philosophy of Science:axw024.
    This article argues that common intuitions regarding (a) the specialness of ‘use-novel’ data for confirmation and (b) that this specialness implies the ‘no-double-counting rule’, which says that data used in ‘constructing’ (calibrating) a model cannot also play a role in confirming the model’s predictions, are too crude. The intuitions in question are pertinent in all the sciences, but we appeal to a climate science case study to illustrate what is at stake. Our strategy is to analyse the intuitive claims in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  41
    Model Tuning in Engineering: Uncovering the Logic.Katie Steele & Charlotte Werndl - 2015 - Journal of Strain Analysis for Engineering Design 51 (1):63-71.
    In engineering, as in other scientific fields, researchers seek to confirm their models with real-world data. It is common practice to assess models in terms of the distance between the model outputs and the corresponding experimental observations. An important question that arises is whether the model should then be ‘tuned’, in the sense of estimating the values of free parameters to get a better fit with the data, and furthermore whether the tuned model can be confirmed with the same data (...)
    Download  
     
    Export citation  
     
    Bookmark