Results for 'Quantum Circuit, Quantum Reality, Quantum Circularity, Quantum Mechanics, Quantum Dynamics'

914 found
Order:
  1.  65
    The Ontology of Mathematics.Ilexa Yardley - 2024 - Medium.Com/the-Circular-Theory.
    Zero and One is Circumference and Diameter (Literally and Figuratively) (Abstract and Concrete) (Unity and Duality) (Unity and Duplicity).
    Download  
     
    Export citation  
     
    Bookmark  
  2. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Are Information, Cognition and the Principle of Existence Intrinsically Structured in the Quantum Model of Reality?Elio Conte - forthcoming - Open Systems and Information Dynamics.
    The thesis of this paper is that Information, Cognition and a Principle of Existence are intrinsically structured in the quantum model of reality. We reach such evidence by using the Clifford algebra. We analyze quantization in some traditional cases of quantum mechanics and, in particular in quantum harmonic oscillator, orbital angular momentum and hydrogen atom.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Logical Types in Quantum Mechanics.Andrew Soltau - manuscript
    Barbour shows that time does not exist in the physical world, and similar conclusions are reached by others such as Deutsch, Davies and Woodward. Every possible configuration of a physical environment simply exists in the universe. The system is objectively static. Observation, however, is an inherently transtemporal phenomenon, involving actual or effective change of the configuration, collapse. Since, in a static environment, all possible configurations exist, transtemporal reality is of the logical type of a movie. The frame of a movie (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Dark Matters and Hidden Variables of Unitary Science: How Neglected Complexity Generates Mysteries and Crises, from Quantum Mechanics and Cosmology to Genetics and Global Development Risks.Andrei P. Kirilyuk - manuscript
    The unreduced many-body interaction problem solution, absent in usual science framework, reveals a new quality of emerging multiple, equally real but mutually incompatible system configurations, or “realisations”, giving rise to the universal concept of dynamic complexity and chaoticity. Their imitation by a single, “average” realisation or trajectory in usual theory (corresponding to postulated “exact” or perturbative problem solutions) is a rough simplification of reality underlying all stagnating and emerging problems of conventional (unitary) science, often in the form of missing, or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Biological Organisation as the True Foundation of Reality.Brian Josephson - forthcoming - In Amoroso Richard (ed.), Proceedings of the Xth International Symposium Honoring J-P Vigier. WORLD SCIENTIFIC PUBLISHING CO..
    The presumptions underlying quantum mechanics make it relevant to a limited range of situations only; furthermore, its statistical character means that it provides no answers to the question ‘what is really going on?’. Following Barad, I hypothesise that the underlying mechanics has parallels with human activities, as used by Barad to account for the way quantum measurements introduce definiteness into previously indefinite situations. We are led to consider a subtle type of order, different from those commonly encountered in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  8. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Theory of Everything, Ultimate Reality and the End of Humanity: Extended Sustainability by the Universal Science of Complexity.Andrei P. Kirilyuk - 2017 - Beau Bassin: LAP LAMBERT Academic Publishing.
    Instead of postulated fixed structures and abstract principles of usual positivistic science, the unreduced diversity of living world reality is consistently derived as dynamically emerging results of unreduced interaction process development, starting from its simplest configuration of two coupled homogeneous protofields. The dynamically multivalued, or complex and intrinsically chaotic, nature of these real interaction results extends dramatically the artificially reduced, dynamically single-valued projection of standard theory and solves its stagnating old and accumulating new problems, “mysteries” and “paradoxes” within the unified (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Dynamics, Quantum mechanics and the Indeterminism of nature.Jörg Neunhäuserer - manuscript
    We show that determinism is false assuming a realistic interpretation of quantum mechanics and considering the sensitive dynamics of macroscopical physical systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Can (quantum) information be sorted out from quantum mechanics?Michele Caponigro & Stefano Mancini - 2009 - NQ Journal.
    We shall draw an affirmative answer to the question posed in the title. The key point will be a quantum description of physical reality. Once fixed at ontic level two basic elements, namely the laws of physics and the matter, we argue that the underlying physical reality emerges from the interconnection between these two elements. We consider any physical process, including measurement, modeled by unitary evolution. In this context, we will deduce quantum random- ness as a consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Complex Organisation and Fundamental Physics.Brian D. Josephson - 2018 - Streaming Media Service, Cambridge University.
    The file on this site provides the slides for a lecture given in Hangzhou in May 2018, and the lecture itself is available at the URL beginning 'sms' in the set of links provided in connection with this item. -/- It is commonly assumed that regular physics underpins biology. Here it is proposed, in a synthesis of ideas by various authors, that in reality structures and mechanisms of a biological character underpin the world studied by physicists, in principle supplying detail (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Quantum mechanics reality and separability.Franco Selleri & G. Tarozzi - 1981 - la Rivista Del Nuovo Cimento 4 (2):1-53.
    TABLE OF CONTENTS: Introduction; de Broglie's paradox.; Quantum theory of distant particles; The EPR paradox; Einstein locality and Bell's inequality; Recent research on Bell's inequality; General consequences of Einstein locality; Nonloeality and relativity; Time-symmetric theories; The Bohm-Aharonov hypothesis; Experiments on Einstein locality; Reduction of the wave packet; Measurements, reality and consciousness; Conclusions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a nonspecialist introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  16. Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...) jumps? These vital problems continue to garner more attention as time passes, particularly with the fading of positivism. If you're a student seeking to explore the fascinating philosophical foundations of quantum mechanics, this book might be just what you need. Written in Persian, brings you closer to the heart of quantum controversies and the fascinating world of quantum mechanics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Can Quantum Mechanics Solve the Hard Problem of Consciousness?Basil J. Hiley & Paavo Pylkkänen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press, Usa.
    The hard problem of consciousness is the problem of explaining how and why physical processes give rise to consciousness (Chalmers 1995). Regardless of many attempts to solve the problem, there is still no commonly agreed solution. It is thus very likely that some radically new ideas are required if we are to make any progress. In this paper we turn to quantum theory to find out whether it has anything to offer in our attempts to understand the place of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Underdeterminations of Consciousness in Quantum Mechanics.Lauro de Matos Nunes Filho & Raoni Wohnrath Arroyo - 2018 - Principia: An International Journal of Epistemology 22 (2):321-337.
    Metaphysical underdetermination arises when we are not able to decide, through purely theoretical criteria, between competing interpretations of scientific theories with different metaphysical commitments. This is the case in which non-relativistic quantum mechanics (QM) finds itself in. Among several available interpretations, there is the one that states that the interaction with the conscious mind of a human observer causes a change in the dynamics of quantum objects undergoing from indefinite to definite states. In this paper, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis 86 (6):1469-1481.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, which is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  23. Sense Perception and Reality - A theory of perceptual relativity, quantum mechanics and the observer dependent universe.Rochelle Forrester (ed.) - 2014 - Best publications.
    Sense perception and Reality examines the remarkable similarities between philosophical idealism and the Copenhagen Interpretation of quantum physics. The book looks at perceptual relativity involving animal senses, neurology and cognitive psychology. It concludes the universe is observer dependent and varies with the sensory apparatus used to observe it. The Copenhagen Interpretation is examined and perceptual relativity would appear to apply in the quantum world. The Copenhagen Interpretation suggests the universe is observer dependent, the same conclusion as is found (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  25. Discrete space and the underlying reality of Quantum Mechanics.Sydney Ernest Grimm - manuscript
    Recently there is some new interest in understanding the physical reality behind the formalism of quantum mechanics. This paper relates the known “quantum mysteries” of QM with the properties of the underlying structure of discrete space. DOI: 10.5281/zenodo.5236617.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Atomism in Quantum Mechanics and Information.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (12):1-11.
    The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantum mechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The Invalid Inference of Universality in Quantum Mechanics.Andrew Knight - manuscript
    The universality assumption (“U”) that quantum wave states only evolve by linear or unitary dynamics has led to a variety of paradoxes in the foundations of physics. U is not directly supported by empirical evidence but is rather an inference from data obtained from microscopic systems. The inference of U conflicts with empirical observations of macroscopic systems, giving rise to the century-old measurement problem and subjecting the inference of U to a higher standard of proof, the burden of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. (1 other version)Scientific Realism meets Metaphysics of Quantum Mechanics.Juha Saatsi - 2017 - In Philosophers Think About Quantum Theory.
    I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Philosophy and Interpretations of Quantum Mechanics.Michele Caponigro - manuscript
    This paper is a critical suvery on the philosophy and the Interpretations of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  31. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. We argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Interpretations of Quantum Mechanics and Emptiness.Michele Caponigro & Ravi Prakash - 2009 - NeuroQuantology Journal, June 2009 7 (2):198-203.
    The underlying physical reality is a central notion in the interpretations of quantum mechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak about relational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of fermions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite to more (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. RELATIONAL REALISM AND THE ONTOGENETIC UNIVERSE: subject, object, and ontological process in quantum mechanics.Michael Epperson - 2020 - Angelaki 25 (3):108-119.
    Amid the wide variety of interpretations of quantum mechanics, the notion of a fully coherent ontological interpretation has seen a promising evolution over the last few decades. Despite this progress, however, the old dualistic categorical constraints of subjectivity and objectivity, correlate with the metrically restricted definition of local and global, have remained largely in place – a reflection of the broader, persistent inheritance of these comfortable strictures throughout the evolution of modern science. If one traces this inheritance back to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. Conservation of the Circle and The Circular Theory.Yardley Ilexa - 2002 - In The Tanglewood Trilogy. Houston, Texas: Opposite Approach Publications.
    Conservation of the Circle is the only dynamic in Nature.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a system (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. What Can Consciousness Anomalies Tell Us About Quantum Mechanics?George Williams - 2016 - Journal of Scientific Exploration 30 (3):326-354.
    In this paper, I explore the link between consciousness and quantum mechanics. Often explanations that invoke consciousness to help explain some of the most perplexing aspects of quantum mechanics are not given serious attention. However, casual dismissal is perhaps unwarranted, given the persistence of the measurement problem, as well as the mysterious nature of consciousness. Using data accumulated from experiments in parapsychology, I examine what anomalous data with respect to consciousness might tell us about various explanations of (...) mechanics. I examine three categories of quantum mechanics interpretations that have some promise of fitting with this anomalous data. I conclude that explanations that posit a substratum of reality containing pure information or potentia, along the lines proposed by Bohm and Stapp, off er the best fit for various categories of this data. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. The history of quantum mechanics as a decisive argument favoring Einstein over lorentz.R. M. Nugayev - 1985 - Philosophy of Science 52 (1):44-63.
    PHILOSOPHY OF SCIENCE, vol. 52, number 1, pp.44-63. R.M. Nugayev, Kazan State |University, USSR. -/- THE HISTORY OF QUANTUM THEORY AS A DECISIVE ARGUMENT FAVORING EINSTEIN OVER LJRENTZ. -/- Abstract. Einstein’s papers on relativity, quantum theory and statistical mechanics were all part of a single research programme ; the aim was to unify mechanics and electrodynamics. It was this broader program – which eventually split into relativistic physics and quantummmechanics – that superseded Lorentz’s theory. The argument of this (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  43. Quantum Mechanics of 'Conscious Energy'.Syed Ismyl Mahmood Rizvi - 2018 - International Journal of Mind, Brain and Cognition 9 (1-2):132-160.
    This paper is aiming to investigate the physical substrate of conscious process. It will attempt to find out: How does conscious process establish relations between their external stimuli and internal stimuli in order to create reality? How does consciousness devoid of new sensory input result to its new quantum effects? And how does conscious process gain mass in brain? This paper will also try to locate the origins of consciousness at the level of neurons along with the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Human/Humanity, Consciousness and Universe: Informational Relation.Florin Gaiseanu - 2019 - Neuroquantology 17 (5):20-30.
    From the perspective of the Informational Model of Consciousness elaborated and reported recently on the basis of the last discoveries of the quantum mechanics and astrophysics, the meeting horizon between some ancient coherent empirical models of the humanity and our modern scientific results is analyzed. These results are discussed in terms of information, as a central axis relating the universe, the human and inter-humanity connections, and consciousness as an informational tool for the exploration of the reality. Bringing into discussion (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  45. Compatibilism in Quantum Mechanics: A New Perspective on Free Will and Determinism.Kaden McCullough - manuscript
    This paper presents a novel argument for compatibilism, the view that free will and determinism are compatible. Drawing on principles from quantum mechanics, specifically the Heisenberg uncertainty principle and the concept of superposition, the paper proposes an analogy between the behavior of particles at the quantum level and the choices made by free agents. It argues that just as particles exist in a field of possibilities until observed, actions exist in a field of possibilities until a decision is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Feyerabend's Reevaluation of Scientific Practice: Quantum Mechanics, Realism and Niels Bohr.Daniel Kuby - 2021 - In Karim Bschir & Jamie Shaw (eds.), Interpreting Feyerabend: Critical Essays. New York, NY: Cambridge University Press. pp. 132-156.
    The aim of this paper is to give an account of the change in Feyerabend's philosophy that made him abandon methodological monism and embrace methodological pluralism. In this paper I offer an explanation in terms of a simple model of 'change of belief through evidence'. My main claim is that the evidence triggering this belief revision can be identified in Feyerabend's technical work in the interpretation of quantum mechanics, in particular his reevaluation of Bohr's contribution to it. This highlights (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47.  81
    Brahman as JSON: A Model of Consciousness Integrating Vedanta, Quantum Mechanics, and Information Theory.Pratik Karnik - manuscript
    This paper proposes a novel model for understanding consciousness by envisioning Brahman—the ultimate, universal consciousness in Vedanta—as an infinitely layered JSON (JavaScript Object Notation) structure. In this model, each aspect of reality, from individual thoughts to timelines and entire universes, is represented as a property within this universal JSON object. By integrating the Vedantic concepts of Atman (individual self) and Brahman (universal consciousness) with ideas from quantum mechanics and information theory, this model suggests that all possible experiences, thoughts, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Summary by an AI of Jean-Louis Boucon's "Introduction to the Ontology of Knowledge" and "Time, Space, and World as Knowledge" 20240724.Jean-Louis Boucon - 2024 - Academia.Edu.
    This summary is not exactly the way I would have done it myself but I must admit that my writing is sometimes a challenge to read. So I asked an AI to do this summary expecting that it will give an easily understandable although not totally accurate view on Ontology of Knowledge and from this general understanding help the reader to read the original papers. Jean-Louis Boucon’s works, "Introduction to the Ontology of Knowledge" and "Time, Space, and World as Knowledge," (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  42
    Brahman as JSON: A Model of Consciousness Integrating Vedanta, Quantum Mechanics, and Information Theory.Pratik Karnik - manuscript
    This paper proposes a novel model for understanding consciousness by envisioning Brahman—the ultimate, universal consciousness in Vedanta—as an infinitely layered JSON (JavaScript Object Notation) structure. In this model, each aspect of reality, from individual thoughts to timelines and entire universes, is represented as a property within this universal JSON object. By integrating the Vedantic concepts of Atman (individual self) and Brahman (universal consciousness) with ideas from quantum mechanics and information theory, this model suggests that all possible experiences, thoughts, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  45
    My God, He Plays Dice! How Albert Einstein Invented Most Of Quantum Mechanics.Bob Doyle - 2019 - Cambridge, MA: I-Phi Press.
    Is it possible that the most famous critic of quantum mechanics actually invented most of its fundamentally important concepts? -/- In his 1905 Brownian motion paper, Einstein quantized matter, proving the existence of atoms. His light quantum hypothesis showed that energy itself comes in particles (photons). He showed energy and matter are interchangeable, E = mc2. In 1905 Einstein was first to see nonlocality and instantaneous action-at-a-distance. In 1907 he saw quantum “jumps” between energy levels in matter, (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 914