Results for 'geodesics'

15 found
Order:
  1. Scrutiny of Einstein's Geodesic and Field Equations.Mohamed Elmansour Hassani - manuscript
    Since its final version and publication in 1916, it is widely reported in several specialized textbooks and research articles that general relativity theory may be reduced to the Newton's gravity theory in the limit of a weak gravitational field and slow motion of the material bodies. In the present paper, the so-called reducibility of Einstein's geodesic and field equations to Newton's equation of motion and Poisson's gravitational potential equation, respectively, is scrutinized and proven to be mathematically, physically and dimensionally wrong (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. On momentum operators given by Killing vectors whose integral curves are geodesics.Thomas Schürmann - 2022 - Physics 4 (4): 1440-1452.
    We consider momentum operators on intrinsically curved manifolds. Given that the momentum operators are Killing vector fields whose integral curves are geodesics, it is shown that the corresponding manifold is either flat, or otherwise of compact type with positive constant sectional curvature and dimension equal to 1, 3 or 7. Explicit representations of momentum operators and the associated Casimir element will be discussed for the 3-sphere. It will be verified that the structure constants of the underlying Lie algebra are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Conditioning by Minimizing Accessibility.Konstantinos Georgatos - 2010 - In Giacomo Bonanno, Benedikt Löwe & Wiebe Hoek (eds.), Logic and the Foundations of Game and Decision Theory €“ Loft 8. Springer Berlin Heidelberg. pp. 20-33.
    This paper presents an axiomatization of a class of set-theoretic conditional operators using minimization of the geodesic distance defined as the shortest path generated by the accessibility relation on a frame. The objective of this modeling is to define conditioning based on a notion of similarity generated by degrees of indistinguishability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. A potential theory approach to an algorithm of conceptual space partitioning.Roman Urban & Magdalena Grzelińska - 2017 - Cognitive Science 17:1-10.
    This paper proposes a new classification algorithm for the partitioning of a conceptual space. All the algorithms which have been used until now have mostly been based on the theory of Voronoi diagrams. This paper proposes an approach based on potential theory, with the criteria for measuring similarities between objects in the conceptual space being based on the Newtonian potential function. The notion of a fuzzy prototype, which generalizes the previous definition of a prototype, is introduced. Furthermore, the necessary conditions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. In the light of time.Arto Annila - 2009 - Proceedings of Royal Society A 465:1173–1198.
    The concept of time is examined using the second law of thermodynamics that was recently formulated as an equation of motion. According to the statistical notion of increasing entropy, flows of energy diminish differences between energy densities that form space. The flow of energy is identified with the flow of time. The non-Euclidean energy landscape, i.e. the curved space–time, is in evolution when energy is flowing down along gradients and levelling the density differences. The flows along the steepest descents, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. On the uncertainty principle in Rindler and Friedmann spacetimes.Thomas Schürmann - 2020 - European Physical Journal C 80.
    We revise the extended uncertainty relations for the Rindler and Friedmann spacetimes recently discussed by Dabrowski and Wagner in [9]. We reveal these results to be coordinate dependent expressions of the invariant uncertainty relations recently derived for general 3-dimensional spaces of constant curvature in [10]. Moreover, we show that the non-zero minimum standard deviations of the momentum in [9] are just artifacts caused by an unfavorable choice of coordinate systems which can be removed by standard arguments of geodesic completion.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Dirac-Type Equations in a Gravitational Field, with Vector Wave Function.Mayeul Arminjon - 2008 - Foundations of Physics 38 (11):1020-1045.
    An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Are the waves detected by LIGO the waves according to Einstein, Pirani, Bondi, Trautmann, Kopeikin or what are they?Alfonso Guillen Gomez - manuscript
    From the geometric formulation of gravity, according to the Einstein-Grosmann-Hilbert equations, of November 1915, as the geodesic movement in the semirimennian manifold of positive curvature, spacetime, where due to absence of symmetries, the conservation of energy-impulse is not possible taking together the material processes and that of the gravitational geometric field, however, given those symmetries in the flat Minkowski spacetime, using the De Sitter model, Einstein linearizing gravitation, of course, really in the absence of gravity, in 1916, purged of some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. In General Relativity, gravity is effect of coordinates with change of geometry of spacetime.Alfonso Leon Guillen Gomez - manuscript
    Einstein structured the theoretical frame of his work on gravity under the Special Relativity and Minkowski´s spacetime using three guide principles: The strong principle of equivalence establishes that acceleration and gravity are equivalents. Mach´s principle explains the inertia of the bodies and particles as completely determined by the total mass existent in the universe. And, general covariance searches to extend the principle of relativity from inertial motion to accelerated motion. Mach´s principle was abandoned quickly, general covariance resulted mathematical property of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Gravity is a quantum force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, from general to particular, breaks the law of inertia of Galilei since recovers apparently the rectilinear uniform movement but not the repose state, unless the bodies have undergone their collapse, although, the curved spacetime (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Classic gravitational tests of post-Einsteinian theories.Nicolae Sfetcu - manuscript
    Albert Einstein proposed three tests of general relativity, later named the classic tests of general relativity, in 1916: the precession of the perihelion of Mercury's orbit, sun light deflection, and the gravitational redshift of the light. For gravitational testing, the indirect effects of gravity are always used, usually particles that are influenced by gravity. In the presence of gravity, the particles move along curved geodesic lines. The sources of gravity that cause the curvature of spacetime are material bodies, depending on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. (1 other version)Interpretation of Singularities in General Relativity and the Information Loss Paradox.Cristi Stoica - manuscript
    When matter is falling into a black hole, the associated information becomes unavailable to the black hole's exterior. If the black hole disappears by Hawking evaporation, the information seems to be lost in the singularity, leading to Hawking's information paradox: the unitary evolution seems to be broken, because a pure separate quantum state can evolve into a mixed one.



    This article proposes a new interpretation of the black hole singularities, which restores the information conservation. For the Schwarzschild black hole, it presents (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Relativity Current Paradigm with Unresolved Anomalies.Alfonso Leon Guillen Gomez - 2014 - Journal of Modern Physics 5:364-374.
    When a theory, as the general relativity, linked to special relativity, is foundation of a scientific paradigm, through normal science and academy, scientifics, professionals, professors, students and journals of that scientific community, the paradigm, it self-sustains and reproduces. Thus, the research is obligated and limited to apply the model existent of the paradigm to formulate problems and solve them, without searching new discoveries. This self-protection of the paradigm causes it to end its cycle of life, only after a long time, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Geometry for a Brain. Optimal Control in a Network of Adaptive Memristors.Ignazio Licata & Germano Resconi - 2013 - Adv. Studies Theor. Phys., (no.10):479-513.
    In the brain the relations between free neurons and the conditioned ones establish the constraints for the informational neural processes. These constraints reflect the systemenvironment state, i.e. the dynamics of homeocognitive activities. The constraints allow us to define the cost function in the phase space of free neurons so as to trace the trajectories of the possible configurations at minimal cost while respecting the constraints imposed. Since the space of the free states is a manifold or a non orthogonal space, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Dependence relations in general relativity.Antonio Vassallo - 2019 - European Journal for Philosophy of Science 10 (1):1-28.
    The paper discusses from a metaphysical standpoint the nature of the dependence relation underpinning the talk of mutual action between material and spatiotemporal structures in general relativity. It is shown that the standard analyses of dependence in terms of causation or grounding are ill-suited for the general relativistic context. Instead, a non-standard analytical framework in terms of structural equation modeling is exploited, which leads to the conclusion that the kind of dependence encoded in the Einstein field equations is a novel (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations