Contents
17 found
Order:
  1. Sufficient Reason & The Axiom of Choice, an Ontological Proof for One Unique Transcendental God for Every Possible World.Assem Hamdy - manuscript
    Chains of causes appear when the existence of God is discussed. It is claimed by some that these chains must be finite and terminated by God. But these chains seem endless through our knowledge search. This endlessness for the physical reasons for any world event expresses the greatness and complexity of God’s creation and so the transcendence of God. So, only we can put our hands on physical reasons in an endless forage for knowledge. Yet, the endlessness of the physical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Duality and Infinity.Guillaume Massas - 2024 - Dissertation, University of California, Berkeley
    Many results in logic and mathematics rely on techniques that allow for concrete, often visual, representations of abstract concepts. A primary example of this phenomenon in logic is the distinction between syntax and semantics, itself an example of the more general duality in mathematics between algebra and geometry. Such representations, however, often rely on the existence of certain maximal objects having particular properties such as points, possible worlds or Tarskian first-order structures. -/- This dissertation explores an alternative to such representations (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. The Banach-Tarski Paradox.Ulrich Meyer - 2023 - Logique Et Analyse 261:41–53.
    Emile Borel regards the Banach-Tarski Paradox as a reductio ad absurdum of the Axiom of Choice. Peter Forrest instead blames the assumption that physical space has a similar structure as the real numbers. This paper argues that Banach and Tarski's result is not paradoxical and that it merely illustrates a surprising feature of the continuum: dividing a spatial region into disjoint pieces need not preserve volume.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Hume’s Principle, Bad Company, and the Axiom of Choice.Sam Roberts & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (4):1158-1176.
    One prominent criticism of the abstractionist program is the so-called Bad Company objection. The complaint is that abstraction principles cannot in general be a legitimate way to introduce mathematical theories, since some of them are inconsistent. The most notorious example, of course, is Frege’s Basic Law V. A common response to the objection suggests that an abstraction principle can be used to legitimately introduce a mathematical theory precisely when it is stable: when it can be made true on all sufficiently (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. El Axioma de elección en el quehacer matemático contemporáneo.Franklin Galindo & Randy Alzate - 2022 - Aitías 2 (3):49-126.
    Para matemáticos interesados en problemas de fundamentos, lógico-matemáticos y filósofos de la matemática, el axioma de elección es centro obligado de reflexión, pues ha sido considerado esencial en el debate dentro de las posiciones consideradas clásicas en filosofía de la matemática (intuicionismo, formalismo, logicismo, platonismo), pero también ha tenido una presencia fundamental para el desarrollo de la matemática y metamatemática contemporánea. Desde una posición que privilegia el quehacer matemático, nos proponemos mostrar los aportes que ha tenido el axioma en varias (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism links (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. High-Order Metaphysics as High-Order Abstractions and Choice in Set Theory.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (21):1-3.
    The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle of abstraction, axiom (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should be equated to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the relation of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Álgebras booleanas, órdenes parciales y axioma de elección.Franklin Galindo - 2017 - Divulgaciones Matematicas 18 ( 1):34-54.
    El objetivo de este artículo es presentar una demostración de un teorema clásico sobre álgebras booleanas y ordenes parciales de relevancia actual en teoría de conjuntos, como por ejemplo, para aplicaciones del método de construcción de modelos llamado “forcing” (con álgebras booleanas completas o con órdenes parciales). El teorema que se prueba es el siguiente: “Todo orden parcial se puede extender a una única álgebra booleana completa (salvo isomorfismo)”. Donde extender significa “sumergir densamente”. Tal demostración se realiza utilizando cortaduras de (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Constructibilidad relativizada y el Axioma de elección.Franklin Galindo & Carlos Di Prisco - 2010 - Mixba'al. Revista Metropolitana de Matemáticas 1 (1):23-40.
    El objetivo de este trabajo es presentar en un solo cuerpo tres maneras de relativizar (o generalizar) el concepto de conjunto constructible de Gödel que no suelen aparecer juntas en la literatura especializada y que son importantes en la Teoría de Conjuntos, por ejemplo para resolver problemas de consistencia o independencia. Presentamos algunos modelos resultantes de las diferentes formas de relativizar el concepto de constructibilidad, sus propiedades básicas y algunas formas débiles del Axioma de Elección válidas o no válidas en (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Perfect set properties in models of ZF.Franklin Galindo & Carlos Di Prisco - 2010 - Fundamenta Mathematicae 208 (208):249-262.
    We study several perfect set properties of the Baire space which follow from the Ramsey property ω→(ω) ω . In particular we present some independence results which complete the picture of how these perfect set properties relate to each other.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Un problema abierto de independencia en la teoría de conjuntos relacionado con ultrafiltros no principales sobre el conjunto de los números naturales N, y con Propiedades Ramsey.Franklin Galindo - manuscript
    En el ámbito de la lógica matemática existe un problema sobre la relación lógica entre dos versiones débiles del Axioma de elección (AE) que no se ha podido resolver desde el año 2000 (aproximadamente). Tales versiones están relacionadas con ultrafiltros no principales y con Propiedades Ramsey (Bernstein, Polarizada, Subretículo, Ramsey, Ordinales flotantes, etc). La primera versión débil del AE es la siguiente (A): “Existen ultrafiltros no principales sobre el conjunto de los números naturales (ℕ)”. Y la segunda versión débil del (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark