Contents
12 found
Order:
  1. Retrieving the Mathematical Mission of the Continuum Concept from the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the transfinite deadlock of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Wand/Set Theories: A realization of Conway's mathematicians' liberation movement, with an application to Church's set theory with a universal set.Tim Button - forthcoming - Journal of Symbolic Logic.
    Consider a variant of the usual story about the iterative conception of sets. As usual, at every stage, you find all the (bland) sets of objects which you found earlier. But you also find the result of tapping any earlier-found object with any magic wand (from a given stock of magic wands). -/- By varying the number and behaviour of the wands, we can flesh out this idea in many different ways. This paper's main Theorem is that any loosely constructive (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and a natural (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Level Theory, Part 2: Axiomatizing the Bare Idea of a Potential Hierarchy.Tim Button - 2021 - Bulletin of Symbolic Logic 27 (4):461-484.
    Potentialists think that the concept of set is importantly modal. Using tensed language as an heuristic, the following bar-bones story introduces the idea of a potential hierarchy of sets: 'Always: for any sets that existed, there is a set whose members are exactly those sets; there are no other sets.' Surprisingly, this story already guarantees well-foundedness and persistence. Moreover, if we assume that time is linear, the ensuing modal set theory is almost definitionally equivalent with non-modal set theories; specifically, with (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   17 citations  
  7. Fair infinite lotteries.Sylvia Wenmackers & Leon Horsten - 2013 - Synthese 190 (1):37-61.
    This article discusses how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. Techniques and ideas from non-standard analysis are brought to bear on the problem.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   42 citations  
  8. John Barwise & Lawrence Moss, Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena[REVIEW]Varol Akman - 1997 - Journal of Logic, Language and Information 6 (4):460-464.
    This is a review of Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena, written by Jon Barwise and Lawrence Moss and published by CSLI Publications in 1996.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Nonstandard set theories and information management.Varol Akman & Mujdat Pakkan - 1996 - Journal of Intelligent Information Systems 6:5-31.
    The merits of set theory as a foundational tool in mathematics stimulate its use in various areas of artificial intelligence, in particular intelligent information systems. In this paper, a study of various nonstandard treatments of set theory from this perspective is offered. Applications of these alternative set theories to information or knowledge management are surveyed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. HYPERSOLVER: a graphical tool for commonsense set theory.Mujdat Pakkan & Varol Akman - 1995 - Information Sciences 85 (1-3):43-61.
    This paper investigates an alternative set theory (due to Peter Aczel) called Hyperset Theory. Aczel uses a graphical representation for sets and thereby allows the representation of non-well-founded sets. A program, called HYPERSOLVER, which can solve systems of equations defined in terms of sets in the universe of this new theory is presented. This may be a useful tool for commonsense reasoning.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Issues in commonsense set theory.Mujdat Pakkan & Varol Akman - 1995 - Artificial Intelligence Review 8:279-308.
    The success of set theory as a foundation for mathematics inspires its use in artificial intelligence, particularly in commonsense reasoning. In this survey, we briefly review classical set theory from an AI perspective, and then consider alternative set theories. Desirable properties of a possible commonsense set theory are investigated, treating different aspects like cumulative hierarchy, self-reference, cardinality, etc. Assorted examples from the ground-breaking research on the subject are also given.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Undaunted sets.Varol Akman - 1992 - ACM SIGACT News 23 (1):47-48.
    This is a short piece of humor (I hope) on nonstandard set theories. An earlier version appeared in Bull. EATCS 45: 146-147 (1991).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark