View topic on PhilPapers for more information
Related categories

25 found
Order:
More results on PhilPapers
  1. On Deductionism.Dan Bruiger - manuscript
    Deductionism assimilates nature to conceptual artifacts (models, equations), and tacitly holds that real physical systems are such artifacts. Some physical concepts represent properties of deductive systems rather than of nature. Properties of mathematical or deductive systems can thereby sometimes falsely be ascribed to natural systems.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Proof That Wittgenstein is Correct About Gödel.P. Olcott - manuscript
    The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic property of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide valid the deductive inference. Conclusions of sound arguments are derived from truth preserving finite string transformations applied to true premises.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Refuting Tarski and Gödel with a Sound Deductive Formalism.P. Olcott - manuscript
    The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic value of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide the valid deductive inference. Sound deductive conclusions are the result of these finite string transformation rules.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Tarski Undefinability Theorem Terse Refutation.P. Olcott - manuscript
    Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Defining Gödel Incompleteness Away.P. Olcott - manuscript
    We can simply define Gödel 1931 Incompleteness away by redefining the meaning of the standard definition of Incompleteness: A theory T is incomplete if and only if there is some sentence φ such that (T ⊬ φ) and (T ⊬ ¬φ). This definition construes the existence of self-contradictory expressions in a formal system as proof that this formal system is incomplete because self-contradictory expressions are neither provable nor disprovable in this formal system. Since self-contradictory expressions are neither provable nor disprovable (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Deductively Sound Formal Proofs.P. Olcott - manuscript
    Could the intersection of [formal proofs of mathematical logic] and [sound deductive inference] specify formal systems having [deductively sound formal proofs of mathematical logic]? All that we have to do to provide [deductively sound formal proofs of mathematical logic] is select the subset of conventional [formal proofs of mathematical logic] having true premises and now we have [deductively sound formal proofs of mathematical logic].
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Minimal Type Theory (MTT).Pete Olcott - manuscript
    Minimal Type Theory (MTT) is based on type theory in that it is agnostic about Predicate Logic level and expressly disallows the evaluation of incompatible types. It is called Minimal because it has the fewest possible number of fundamental types, and has all of its syntax expressed entirely as the connections in a directed acyclic graph.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. A Theory of Implicit Commitment for Mathematical Theories.Mateusz Łełyk & Carlo Nicolai - manuscript
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. ¿Qué significa paraconsistente, indescifrable, aleatorio, computable e incompleto? Una revisión de la Manera de Godel: explota en un mundo indecible (Godel’s Way: exploits into an undecidable world) por Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160P (2012) (revisión revisada 2019).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 44-63.
    En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paraconsistencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. The Logical Strength of Compositional Principles.Richard Heck - 2018 - Notre Dame Journal of Formal Logic 59 (1):1-33.
    This paper investigates a set of issues connected with the so-called conservativeness argument against deflationism. Although I do not defend that argument, I think the discussion of it has raised some interesting questions about whether what I call “compositional principles,” such as “a conjunction is true iff its conjuncts are true,” have substantial content or are in some sense logically trivial. The paper presents a series of results that purport to show that the compositional principles for a first-order language, taken (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. What Paradoxes Depend On.Ming Hsiung - 2018 - Synthese:1-27.
    This paper gives a definition of self-reference on the basis of the dependence relation given by Leitgeb (2005), and the dependence digraph by Beringer & Schindler (2015). Unlike the usual discussion about self-reference of paradoxes centering around Yablo's paradox and its variants, I focus on the paradoxes of finitary characteristic, which are given again by use of Leitgeb's dependence relation. They are called 'locally finite paradoxes', satisfying that any sentence in these paradoxes can depend on finitely many sentences. I prove (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Typed and Untyped Disquotational Truth.Cezary Cieśliński - 2015 - In Kentaro Fujimoto, José Martínez Fernández, Henri Galinon & Theodora Achourioti (eds.), Unifying the Philosophy of Truth. Springer Verlag.
    We present an overview of typed and untyped disquotational truth theories with the emphasis on their (non)conservativity over the base theory of syntax. Two types of conservativity are discussed: syntactic and semantic. We observe in particular that TB—one of the most basic disquotational theories—is not semantically conservative over its base; we show also that an untyped disquotational theory PTB is a syntactically conservative extension of Peano Arithmetic.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The Innocence of Truth.Cezary Cieśliński - 2015 - Dialectica 69 (1):61-85.
    One of the popular explications of the deflationary tenet of ‘thinness’ of truth is the conservativeness demand: the declaration that a deflationary truth theory should be conservative over its base. This paper contains a critical discussion and assessment of this demand. We ask and answer the question of whether conservativity forms a part of deflationary doctrines.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. T-Equivalences for Positive Sentences.Cezary Cieśliński - 2011 - Review of Symbolic Logic 4 (2):319-325.
    Answering a question formulated by Halbach (2009), I show that a disquotational truth theory, which takes as axioms all positive substitutions of the sentential T-schema, together with all instances of induction in the language with the truth predicate, is conservative over its syntactical base.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. The Gödel Paradox and Wittgenstein's Reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics match (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Hilbert's Program Then and Now.Richard Zach - 2007 - In Dale Jacquette (ed.), Philosophy of Logic. Amsterdam: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Kurt Gödel, Paper on the Incompleteness Theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. Amsterdam: North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. Le quantificateur effini, la descente infinie et les preuves de consistance de Gauthier. [REVIEW]Richard Zach - 2004 - Philosophiques 31 (1):221-224.
    Internal Logic brings together several threads of Yvon Gauthier's work on the foundations of mathematics and revisits his attempt to, as he puts it, radicalize Hilbert's Program. A radicalization of Hilbert's Program, I take it, is supposed to take Hilberts' finitary viewpoint more seriously than other attempts to salvage Hilbert's Program have. Such a return to the "roots of Hilbert's metamathematical idea" will, so claims Gauthier, enable him to save Hilbert's Program.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  20. Mathematics and the Theory of Multiplicities: Badiou and Deleuze Revisited.Daniel W. Smith - 2003 - Southern Journal of Philosophy 41 (3):411-449.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  21. The Kinds of Truth of Geometry Theorems.Michael Bulmer, Desmond Fearnley-Sander & Tim Stokes - 2001 - In Jürgen Richter-Gebert & Dongming Wang (eds.), LNCS: Lecture Notes In Computer Science. Springer Verlag. pp. 129-142.
    Proof by refutation of a geometry theorem that is not universally true produces a Gröbner basis whose elements, called side polynomials, may be used to give inequations that can be added to the hypotheses to give a valid theorem. We show that (in a certain sense) all possible subsidiary conditions are implied by those obtained from the basis; that what we call the kind of truth of the theorem may be derived from the basis; and that the side polynomials may (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. Numbers and Functions in Hilbert's Finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  23. Eliminating Undecidability and Incompleteness in Formal Systems.Pete Olcott - manuscript
    To eliminate incompleteness, undecidability and inconsistency from formal systems we only need to convert the formal proofs to theorem consequences of symbolic logic to conform to the sound deductive inference model. -/- Within the sound deductive inference model there is a (connected sequence of valid deductions from true premises to a true conclusion) thus unlike the formal proofs of symbolic logic provability cannot diverge from truth.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. On Truth and Instrumentalisation.Chris Henry - unknown
    This paper makes two claims. Firstly, it shows that thinking the truth of any particular concept (such as politics) is founded upon an instrumental logic that betrays the truth of a situation. Truth cannot be thought ‘of something’, for this would fall back into a theory of correspondence. Instead, truth is a function of thought. In order to make this move to a functional concept of truth, I outline Dewey’s criticism, and two important repercussions, of dogmatically instrumental philosophy. I then (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Consistency Problem and “Unexpected Hanging Paradox” (An Answering to P=NP Problem).Farzad Didehvar - unknown
    Abstract The Theory of Computation in its existed form is based on Church –Turing Thesis. Throughout this paper, we show that the Turing computation model of this theory leads us to a contradiction. In brief, by applying a well-known paradox (Unexpected hanging paradox) we show a contradiction in the Theory when we consider the Turing model as our Computation model.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark