- Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving.Markus Pantsar - 2019 - Erkenntnis 86 (4):961-997.details
|
|
Perceiving fingers in single-digit arithmetic problems.Ilaria Berteletti & James R. Booth - 2015 - Frontiers in Psychology 6.details
|
|
(2 other versions)Perceptual Integration, Modularity, and Cognitive Penetration.Daniel C. Burnston & Jonathan Cohen - 2015 - In John Zeimbekis & Athanassios Raftopoulos (eds.), The Cognitive Penetrability of Perception: New Philosophical Perspectives. Oxford: Oxford University Press.details
|
|
Conceptual Integration of Arithmetic Operations With Real‐World Knowledge: Evidence From Event‐Related Potentials.Amy M. Guthormsen, Kristie J. Fisher, Miriam Bassok, Lee Osterhout, Melissa DeWolf & Keith J. Holyoak - 2016 - Cognitive Science 40 (3):723-757.details
|
|
About the influence of the presentation format on arithmetical-fact retrieval processes.Marie-Pascale Noël, Wim Fias & Marc Brysbaert - 1997 - Cognition 63 (3):335-374.details
|
|
Mathematics anxiety and mental arithmetic performance: An exploratory investigation.Mark H. Ashcraft & Michael W. Faust - 1994 - Cognition and Emotion 8 (2):97-125.details
|
|
Automatization through Practice: The Opportunistic‐Stopping Phenomenon Called into Question.Jasinta D. M. Dewi, Jeanne Bagnoud & Catherine Thevenot - 2021 - Cognitive Science 45 (12):e13074.details
|
|
Spatial biases during mental arithmetic: evidence from eye movements on a blank screen.Matthias Hartmann, Fred W. Mast & Martin H. Fischer - 2015 - Frontiers in Psychology 6.details
|
|
Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern Universitydetails
|
|
How the Abstract Becomes Concrete: Irrational Numbers Are Understood Relative to Natural Numbers and Perfect Squares.Purav Patel & Sashank Varma - 2018 - Cognitive Science 42 (5):1642-1676.details
|
|
Précis of the number sense.Stanislas Dehaene - 2001 - Mind and Language 16 (1):16–36.details
|
|
(1 other version)The Power of 2: How an Apparently Irregular Numeration System Facilitates Mental Arithmetic.Andrea Bender & Sieghard Beller - 2017 - Cognitive Science 41 (1):158-187.details
|
|
Cognitive arithmetic across cultures.Jamie I. D. Campbell & Qilin Xue - 2001 - Journal of Experimental Psychology: General 130 (2):299.details
|
|
The neural bases of the multiplication problem-size effect across countries.Jérôme Prado, Jiayan Lu, Li Liu, Qi Dong, Xinlin Zhou & James R. Booth - 2013 - Frontiers in Human Neuroscience 7.details
|
|
Spatial complexity of character-based writing systems and arithmetic in primary school: a longitudinal study.Maja Rodic, Tatiana Tikhomirova, Tatiana Kolienko, Sergey Malykh, Olga Bogdanova, Dina Y. Zueva, Elena I. Gynku, Sirui Wan, Xinlin Zhou & Yulia Kovas - 2015 - Frontiers in Psychology 6.details
|
|
Running the number line: Rapid shifts of attention in single-digit arithmetic.Romain Mathieu, Audrey Gourjon, Auriane Couderc, Catherine Thevenot & Jérôme Prado - 2016 - Cognition 146 (C):229-239.details
|
|
Ten-year-old children strategies in mental addition: A counting model account.Catherine Thevenot, Pierre Barrouillet, Caroline Castel & Kim Uittenhove - 2016 - Cognition 146 (C):48-57.details
|
|
A comparison of mental arithmetic performance in time and frequency domains.Anmar Abdul-Rahman - 2022 - Frontiers in Psychology 13.details
|
|
A Single-Boundary Accumulator Model of Response Times in an Addition Verification Task.Thomas J. Faulkenberry - 2017 - Frontiers in Psychology 8.details
|
|
Eye gaze reveals a fast, parallel extraction of the syntax of arithmetic formulas.Elisa Schneider, Masaki Maruyama, Stanislas Dehaene & Mariano Sigman - 2012 - Cognition 125 (3):475-490.details
|
|
Architectures for numerical cognition.Jamie I. D. Campbell - 1994 - Cognition 53 (1):1-44.details
|
|
Activation of the intermediate sum in intentional and automatic calculations.Yael Abramovich & Liat Goldfarb - 2015 - Frontiers in Psychology 6.details
|
|
Fast automated counting procedures in addition problem solving: When are they used and why are they mistaken for retrieval?Kim Uittenhove, Catherine Thevenot & Pierre Barrouillet - 2016 - Cognition 146 (C):289-303.details
|
|
The use of procedural knowledge in simple addition and subtraction problems.Michel Fayol & Catherine Thevenot - 2012 - Cognition 123 (3):392-403.details
|
|
The relation between language and arithmetic in bilinguals: insights from different stages of language acquisition.Amandine Van Rinsveld, Martin Brunner, Karin Landerl, Christine Schiltz & Sonja Ugen - 2015 - Frontiers in Psychology 6.details
|
|
Rapid parallel semantic processing of numbers without awareness.Filip Van Opstal, Floris P. de Lange & Stanislas Dehaene - 2011 - Cognition 120 (1):136-147.details
|
|
Scrutinizing patterns of solution times in alphabet-arithmetic tasks favors counting over retrieval models.Catherine Thevenot, Jasinta D. M. Dewi, Jeanne Bagnoud, Kim Uittenhove & Caroline Castel - 2020 - Cognition 200 (C):104272.details
|
|
On doing multi-act arithmetic: A multitrait-multimethod approach of performance dimensions in integrated multitasking.Frank Schumann, Michael B. Steinborn, Hagen C. Flehmig, Jens Kürten, Robert Langner & Lynn Huestegge - 2022 - Frontiers in Psychology 13.details
|
|
Arithmetic operation and working memory: differential suppression in dual tasks.Kyoung-Min Lee & So-Young Kang - 2002 - Cognition 83 (3):B63-B68.details
|
|
Representational Structures of Arithmetical Thinking: Part I.Wojciech Krysztofiak - 2016 - Axiomathes 26 (1):1-40.details
|
|
Indexed Natural Numbers in Mind: A Formal Model of the Basic Mature Number Competence. [REVIEW]Wojciech Krysztofiak - 2012 - Axiomathes 22 (4):433-456.details
|
|
Do Exact Calculation and Computation Estimation Reflect the Same Skills? Developmental and Individual Differences Perspectives.Dana Ganor-Stern - 2018 - Frontiers in Psychology 9.details
|
|
Predicting arithmetical achievement from neuro-psychological performance: a longitudinal study.M. Fayol - 1998 - Cognition 68 (2):B63-B70.details
|
|
The Whorfian hypothesis and numerical cognition: is `twenty-four' processed in the same way as `four-and-twenty'?Marc Brysbaert, Wim Fias & Marie-Pascale Noël - 1998 - Cognition 66 (1):51-77.details
|
|
The arithmetic tie effect is mainly encoding-based.Sven Blankenberger - 2001 - Cognition 82 (1):B15-B24.details
|
|
On the problem-size effect in small additions: Can we really discard any counting-based account?Pierre Barrouillet & Catherine Thevenot - 2013 - Cognition 128 (1):35-44.details
|
|