Switch to: References

Add citations

You must login to add citations.
  1. A Defense of Second-Order Logic.Otávio Bueno - 2010 - Axiomathes 20 (2-3):365-383.
    Second-order logic has a number of attractive features, in particular the strong expressive resources it offers, and the possibility of articulating categorical mathematical theories (such as arithmetic and analysis). But it also has its costs. Five major charges have been launched against second-order logic: (1) It is not axiomatizable; as opposed to first-order logic, it is inherently incomplete. (2) It also has several semantics, and there is no criterion to choose between them (Putnam, J Symbol Logic 45:464–482, 1980 ). Therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How to Express Ontological Commitment in the Vernacular.Jamin Asay - 2010 - Philosophia Mathematica 18 (3):293-310.
    According to the familiar Quinean understanding of ontological commitment, (1) one undertakes ontological commitments only via theoretical regimentations, and (2) ontological commitments are to be identified with the domain of a theory’s quantifiers. Jody Azzouni accepts (1), but rejects (2). Azzouni accepts (1) because he believes that no vernacular expression carries ontological commitments. He rejects (2) by locating a theory’s commitments with the extension of an existence predicate. I argue that Azzouni’s two theses undermine each other. If ontological commitments follow (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)Nominalism.Zoltan Szabo - 2003 - In Michael J. Loux & Dean W. Zimmerman (eds.), The Oxford handbook of metaphysics. New York: Oxford University Press.
    …entities? 2. How to be a nominalist 2.1. “Speak with the vulgar …” 2.2. “…think with the learned” 3. Arguments for nominalism 3.1. Intelligibility, physicalism, and economy 3.2. Causal..
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Fictionalism in the philosophy of mathematics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Mathematical fictionalism (or as I'll call it, fictionalism) is best thought of as a reaction to mathematical platonism. Platonism is the view that (a) there exist abstract mathematical objects (i.e., nonspatiotemporal mathematical objects), and (b) our mathematical sentences and theories provide true descriptions of such objects. So, for instance, on the platonist view, the sentence ‘3 is prime’ provides a straightforward description of a certain object—namely, the number 3—in much the same way that the sentence ‘Mars is red’ provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Platonism in metaphysics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Platonism is the view that there exist such things as abstract objects — where an abstract object is an object that does not exist in space or time and which is therefore entirely non-physical and nonmental. Platonism in this sense is a contemporary view. It is obviously related to the views of Plato in important ways, but it is not entirely clear that Plato endorsed this view, as it is defined here. In order to remain neutral on this question, the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On "on what there is".Jody Azzouni - 1998 - Pacific Philosophical Quarterly 79 (1):1–18.
    All sides in the recent debates over the Quine‐Putnam Indispensability thesis presuppose Quine's criterion for determining what a discourse is ontologically committed to. I subject the criterion to scrutiny, especially in regard to the available competitor‐criteria, asking what means of evaluation there are for comparing alternative criteria against each other. Finding none, the paper concludes that ontological questions, in a certain sense, are philosophically indeterminate.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • On creeping minimalism and the nature of minimal entities.Luca Moretti - 2008 - In Heather Dyke (ed.), From Truth to Reality: New Essays in Logic and Metaphysics. New York: Routledge.
    The general tendency or attitude that Dreier 2004 calls creeping minimalism is ramping up in contemporary analytic philosophy. Those who entertain this attitude will take for granted a framework of deflationary or minimal notions – principally semantical1 and ontological – by means of which to analyse problems in different philosophical fields – e.g. theory of truth, metaethics, philosophy of language, the debate on realism and antirealism, etc. Let us call sweeping minimalist the philosopher affected by creeping minimalism. The framework of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstract mathematical tools and machines for mathematics.Jean-Pierre Marquis - 1997 - Philosophia Mathematica 5 (3):250-272.
    In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem which immediately follows (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ontological commitment in the vernacular.Jody Azzouni - 2007 - Noûs 41 (2):204–226.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Truth via anaphorically unrestricted quantifiers.Jody Azzouni - 2001 - Journal of Philosophical Logic 30 (4):329-354.
    A new approach to truth is offered which dispenses with the truth predicate, and replaces it with a special kind of quantifier which simultaneously binds variables in sentential and nominal positions. The resulting theory of truth for a (first-order) language is shown to be able to handle blind truth ascriptions, and is shown to be compatible with a characterization of the semantic and syntactic principles governing that language. Comparisons with other approaches to truth are drawn. An axiomatization of AU-quantifiers and (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Naturalism and Mathematics.Jeffrey W. Roland - 2015 - In Kelly James Clark (ed.), The Blackwell Companion to Naturalism. Hoboken: Wiley-Blackwell. pp. 289–304.
    In this chapter, I consider some problems with naturalizing mathematics. More specifically, I consider how the two leading kinds of approach to naturalizing mathematics, to wit, Quinean indispensability‐based approaches and Maddy's Second Philosophical approach, seem to run afoul of constraints that any satisfactory naturalistic mathematics must meet. I then suggest that the failure of these kinds of approach to meet the relevant constraints indicates a general problem with naturalistic mathematics meeting these constraints, and thus with the project of naturalizing mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Extra-Mathematical Program Explanation of Color Experience.Nicholas Danne - 2020 - International Studies in the Philosophy of Science 33 (3):153-173.
    In the debate over whether mathematical facts, properties, or entities explain physical events (in what philosophers call “extra-mathematical” explanations), Aidan Lyon’s (2012) affirmative answer stands out for its employment of the program explanation (PE) methodology of Frank Jackson and Philip Pettit (1990). Juha Saatsi (2012; 2016) objects, however, that Lyon’s examples from the indispensabilist literature are (i) unsuitable for PE, (ii) nominalizable into non-mathematical terms, and (iii) mysterious about the explanatory relation alleged to obtain between the PE’s mathematical explanantia and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A puzzle about Moorean metaphysics.Louis Doulas - 2020 - Philosophical Studies 178 (2):493-513.
    Some metaphysicians believe that existence debates are easily resolved by trivial inferences from Moorean premises. This paper considers how the introduction of negative Moorean facts—negative existentials that command Moorean certainty—complicates this picture. In particular, it shows how such facts, when combined with certain plausible metaontological principles, generate a puzzle that commits the proponents of this method to a contradiction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deflationary Nominalism and Puzzle Avoidance.David Mark Kovacs - 2019 - Philosophia Mathematica 27 (1):88-104.
    In a series of works, Jody Azzouni has defended deflationary nominalism, the view that certain sentences quantifying over mathematical objects are literally true, although such objects do not exist. One alleged attraction of this view is that it avoids various philosophical puzzles about mathematical objects. I argue that this thought is misguided. I first develop an ontologically neutral counterpart of Field’s reliability challenge and argue that deflationary nominalism offers no distinctive answer to it. I then show how this reasoning generalizes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of Mathematics for the Masses : Extending the scope of the philosophy of mathematics.Stefan Buijsman - 2016 - Dissertation, Stockholm University
    One of the important discussions in the philosophy of mathematics, is that centered on Benacerraf’s Dilemma. Benacerraf’s dilemma challenges theorists to provide an epistemology and semantics for mathematics, based on their favourite ontology. This challenge is the point on which all philosophies of mathematics are judged, and clarifying how we might acquire mathematical knowledge is one of the main occupations of philosophers of mathematics. In this thesis I argue that this discussion has overlooked an important part of mathematics, namely mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The challenge of many logics: a new approach to evaluating the role of ideology in Quinean commitment.Jody Azzouni - 2019 - Synthese 196 (7):2599-2619.
    Can Quine’s criterion for ontological commitment be comparatively applied across different logics? If so, how? Cross-logical evaluations of discourses are central to contemporary philosophy of mathematics and metaphysics. The focus here is on the influential and important arguments of George Boolos and David Lewis that second-order logic and plural quantification don’t incur additional ontological commitments over and above those incurred by first-order quantifiers. These arguments are challenged by the exhibition of a technical tool—the truncation-model construction of notational equivalents—that compares the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stipulation, logic, and ontological independence.Jody Azzouni - 2000 - Philosophia Mathematica 8 (3):225-243.
    A distinction between the epistemic practices in mathematics and in the empirical sciences is rehearsed to motivate the epistemic role puzzle. This is distinguished both from Benacerraf's 1973 epistemic puzzle and from sceptical arguments against our knowledge of an external world. The stipulationist position is described, a position which can address this puzzle. Methods of avoiding the stipulationist position by using pure logic to provide knowledge of mathematical abstracta are discussed and criticized.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The derivation-indicator view of mathematical practice.Jody Azzouni - 2004 - Philosophia Mathematica 12 (2):81-106.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (1 other version)Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2006 - In Russ Shafer-Landau (ed.), Oxford Studies in Metaethics: Volume 1. Clarendon Press.
    In an influential book, Gilbert Harman writes, "In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles [1977, 9 – 10]." What is the epistemological relevance of this contrast, if genuine? In this article, I argue that ethicists and philosophers of mathematics have misunderstood it. They have confused what I will call the justificatory challenge for realism about an (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Counterexample to Deflationary Nominalism.Nicholas Danne - 2023 - Erkenntnis 88 (4):1721-1740.
    According to Jody Azzouni’s “deflationary nominalism,” the singular terms of mathematical language applied or unapplied to science refer to nothing at all. What does exist, Azzouni claims, must satisfy the quaternary condition he calls “thick epistemic access” (TEA). In this paper I argue that TEA surreptitiously reifies some mathematical entities. The mathematical entity that I take TEA to reify is the Fourier harmonic, an infinite-duration monochromatic sinusoid applied throughout engineering and physics. I defend the reality of the harmonic, in Azzouni’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Existence, Mathematical Nominalism, and Meta-Ontology: An Objection to Azzouni on Criteria for Existence.Farbod Akhlaghi-Ghaffarokh - 2018 - Philosophia Mathematica 26 (2):251-265.
    Jody Azzouni argues that whilst it is indeterminate what the criteria for existence are, there is a criterion that has been collectively adopted to use ‘exist’ that we can employ to argue for positions in ontology. I raise and defend a novel objection to Azzouni: his view has the counterintuitive consequence that the facts regarding what exists can and will change when users of the word ‘exist’ change what criteria they associate with its usage. Considering three responses, I argue Azzouni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An anti-realist account of the application of mathematics.Otávio Bueno - 2016 - Philosophical Studies 173 (10):2591-2604.
    Mathematical concepts play at least three roles in the application of mathematics: an inferential role, a representational role, and an expressive role. In this paper, I argue that, despite what has often been alleged, platonists do not fully accommodate these features of the application of mathematics. At best, platonism provides partial ways of handling the issues. I then sketch an alternative, anti-realist account of the application of mathematics, and argue that this account manages to accommodate these features of the application (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Does The Necessity of Mathematical Truths Imply Their Apriority?Mark McEvoy - 2013 - Pacific Philosophical Quarterly 94 (4):431-445.
    It is sometimes argued that mathematical knowledge must be a priori, since mathematical truths are necessary, and experience tells us only what is true, not what must be true. This argument can be undermined either by showing that experience can yield knowledge of the necessity of some truths, or by arguing that mathematical theorems are contingent. Recent work by Albert Casullo and Timothy Williamson argues (or can be used to argue) the first of these lines; W. V. Quine and Hartry (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A new characterization of scientific theories.Jody Azzouni - 2014 - Synthese 191 (13):2993-3008.
    First, I discuss the older “theory-centered” and the more recent semantic conception of scientific theories. I argue that these two perspectives are nothing more than terminological variants of one another. I then offer a new theory-centered view of scientific theories. I argue that this new view captures the insights had by each of these earlier views, that it’s closer to how scientists think about their own theories, and that it better accommodates the phenomenon of inconsistent scientific theories.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Platonism in Metaphysics.Markn D. Balaguer - 2016 - Stanford Encyclopedia of Philosophy 1 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • That We See That Some Diagrammatic Proofs Are Perfectly Rigorous.Jody Azzouni - 2013 - Philosophia Mathematica 21 (3):323-338.
    Mistaken reasons for thinking diagrammatic proofs aren't rigorous are explored. The main result is that a confusion between the contents of a proof procedure (what's expressed by the referential elements in a proof procedure) and the unarticulated mathematical aspects of a proof procedure (how that proof procedure is enabled) gives the impression that diagrammatic proofs are less rigorous than language proofs. An additional (and independent) factor is treating the impossibility of naturally generalizing a diagrammatic proof procedure as an indication of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The epistemological status of computer-assisted proofs.Mark McEvoy - 2008 - Philosophia Mathematica 16 (3):374-387.
    Several high-profile mathematical problems have been solved in recent decades by computer-assisted proofs. Some philosophers have argued that such proofs are a posteriori on the grounds that some such proofs are unsurveyable; that our warrant for accepting these proofs involves empirical claims about the reliability of computers; that there might be errors in the computer or program executing the proof; and that appeal to computer introduces into a proof an experimental element. I argue that none of these arguments withstands scrutiny, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mathematics and fiction II: Analogy.Robert Thomas - 2002 - Logique Et Analyse 45:185-228.
    The object of this paper is to study the analogy, drawn both positively and negatively, between mathematics and fiction. The analogy is more subtle and interesting than fictionalism, which was discussed in part I. Because analogy is not common coin among philosophers, this particular analogy has been discussed or mentioned for the most part just in terms of specific similarities that writers have noticed and thought worth mentioning without much attention's being paid to the larger picture. I intend with this (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Why do informal proofs conform to formal norms?Jody Azzouni - 2009 - Foundations of Science 14 (1-2):9-26.
    Kant discovered a philosophical problem with mathematical proof. Despite being a priori , its methodology involves more than analytic truth. But what else is involved? This problem is widely taken to have been solved by Frege’s extension of logic beyond its restricted (and largely Aristotelian) form. Nevertheless, a successor problem remains: both traditional and contemporary (classical) mathematical proofs, although conforming to the norms of contemporary (classical) logic, never were, and still aren’t, executed by mathematicians in a way that transparently reveals (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Intentional gaps in mathematical proofs.Don Fallis - 2003 - Synthese 134 (1-2):45 - 69.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Non-ontological Structuralism†.Michael Resnik - 2019 - Philosophia Mathematica 27 (3):303-315.
    ABSTRACT Historical structuralist views have been ontological. They either deny that there are any mathematical objects or they maintain that mathematical objects are structures or positions in them. Non-ontological structuralism offers no account of the nature of mathematical objects. My own structuralism has evolved from an early sui generis version to a non-ontological version that embraces Quine’s doctrine of ontological relativity. In this paper I further develop and explain this view.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Accessibility of reformulated mathematical content.Stefan Buijsman - 2017 - Synthese 194 (6).
    I challenge a claim that seems to be made when nominalists offer reformulations of the content of mathematical beliefs, namely that these reformulations are accessible to everyone. By doing so, I argue that these theories cannot account for the mathematical knowledge that ordinary people have. In the first part of the paper I look at reformulations that employ the concept of proof, such as those of Mary Leng and Ottavio Bueno. I argue that ordinary people don’t have many beliefs about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The surveyability of long proofs.Edwin Coleman - 2009 - Foundations of Science 14 (1-2):27-43.
    The specific characteristics of mathematical argumentation all depend on the centrality that writing has in the practice of mathematics, but blindness to this fact is near universal. What follows concerns just one of those characteristics, justification by proof. There is a prevalent view that long proofs pose a problem for the thesis that mathematical knowledge is justified by proof. I argue that there is no such problem: in fact, virtually all the justifications of mathematical knowledge are ‘long proofs’, but because (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Applied Mathematics in the Sciences.Dale Jacquette - 2006 - Croatian Journal of Philosophy 6 (2):237-267.
    A complete philosophy of mathematics must address Paul Benacerraf’s dilemma. The requirements of a general semantics for the truth of mathematical theorems that coheres also with the meaning and truth conditions for non-mathematical sentences, according to Benacerraf, should ideally be coupled with an adequate epistemology for the discovery of mathematical knowledge. Standard approaches to the philosophy of mathematics are criticized against their own merits and against the background of Benacerraf’s dilemma, particularly with respect to the problem of understanding the distinction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why deflationary nominalists shouldn’t be agnostics.Jody Azzouni - 2015 - Philosophical Studies 172 (5):1143-1161.
    A feature of agnostic views—views that officially express ignorance about the existence of something —is that they are widely perceived to be epistemically more cautious than views that are committed to the entities in question. This is often seen as giving agnostics a debating advantage: all things being equal, fence-sitters have smaller argumentative burdens. Otávio Bueno argues in this way for what he calls “agnostic nominalism,” the view that we don’t know whether ontologically-independent Platonic objects exist. I show that agnostic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Empty de re attitudes about numbers.Jody Azzouni - 2009 - Philosophia Mathematica 17 (2):163-188.
    I dub a certain central tradition in philosophy of language (and mind) the de re tradition. Compelling thought experiments show that in certain common cases the truth conditions for thoughts and public-language expressions categorically turn on external objects referred to, rather than on linguistic meanings and/or belief assumptions. However, de re phenomena in language and thought occur even when the objects in question don't exist. Call these empty de re phenomena. Empty de re thought with respect to numeration is explored (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is unsaying polite?Berislav Žarnić - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 201--224.
    This paper is divided in five sections. Section 11.1 sketches the history of the distinction between speech act with negative content and negated speech act, and gives a general dynamic interpretation for negated speech act. “Downdate semantics” for AGM contraction is introduced in Section 11.2. Relying on semantically interpreted contraction, Section 11.3 develops the dynamic semantics for constative and directive speech acts, and their external negations. The expressive completeness for the formal variants of natural language utterances, none of which is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation