Switch to: References

Add citations

You must login to add citations.
  1. Anti-exceptionalism about logic as tradition rejection.Ben Martin & Ole Thomassen Hjortland - 2022 - Synthese 200 (2):1-33.
    While anti-exceptionalism about logic is now a popular topic within the philosophy of logic, there’s still a lack of clarity over what the proposal amounts to. currently, it is most common to conceive of AEL as the proposal that logic is continuous with the sciences. Yet, as we show here, this conception of AEL is unhelpful due to both its lack of precision, and its distortion of the current debates. Rather, AEL is better understood as the rejection of certain traditional (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematizing as a virtuous practice: different narratives and their consequences for mathematics education and society.Deborah Kant & Deniz Sarikaya - 2020 - Synthese 199 (1-2):3405-3429.
    There are different narratives on mathematics as part of our world, some of which are more appropriate than others. Such narratives might be of the form ‘Mathematics is useful’, ‘Mathematics is beautiful’, or ‘Mathematicians aim at theorem-credit’. These narratives play a crucial role in mathematics education and in society as they are influencing people’s willingness to engage with the subject or the way they interpret mathematical results in relation to real-world questions; the latter yielding important normative considerations. Our strategy is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Audience role in mathematical proof development.Zoe Ashton - 2020 - Synthese 198 (Suppl 26):6251-6275.
    The role of audiences in mathematical proof has largely been neglected, in part due to misconceptions like those in Perelman and Olbrechts-Tyteca which bar mathematical proofs from bearing reflections of audience consideration. In this paper, I argue that mathematical proof is typically argumentation and that a mathematician develops a proof with his universal audience in mind. In so doing, he creates a proof which reflects the standards of reasonableness embodied in his universal audience. Given this framework, we can better understand (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Otávio Bueno* and Steven French.**Applying Mathematics: Immersion, Inference, Interpretation. [REVIEW]Anthony F. Peressini - 2020 - Philosophia Mathematica 28 (1):116-127.
    Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Observations on Sick Mathematics.Andrew Aberdein - 2010 - In Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.), Philosophical Perspectives on Mathematical Practice. College Publications. pp. 269--300.
    This paper argues that new light may be shed on mathematical reasoning in its non-pathological forms by careful observation of its pathologies. The first section explores the application to mathematics of recent work on fallacy theory, specifically the concept of an ‘argumentation scheme’: a characteristic pattern under which many similar inferential steps may be subsumed. Fallacies may then be understood as argumentation schemes used inappropriately. The next section demonstrates how some specific mathematical fallacies may be characterized in terms of argumentation (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • How to Frame Understanding in Mathematics: A Case Study Using Extremal Proofs.Merlin Carl, Marcos Cramer, Bernhard Fisseni, Deniz Sarikaya & Bernhard Schröder - 2021 - Axiomathes 31 (5):649-676.
    The frame concept from linguistics, cognitive science and artificial intelligence is a theoretical tool to model how explicitly given information is combined with expectations deriving from background knowledge. In this paper, we show how the frame concept can be fruitfully applied to analyze the notion of mathematical understanding. Our analysis additionally integrates insights from the hermeneutic tradition of philosophy as well as Schmid’s ideal genetic model of narrative constitution. We illustrate the practical applicability of our theoretical analysis through a case (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Acceptable gaps in mathematical proofs.Line Edslev Andersen - 2020 - Synthese 197 (1):233-247.
    Mathematicians often intentionally leave gaps in their proofs. Based on interviews with mathematicians about their refereeing practices, this paper examines the character of intentional gaps in published proofs. We observe that mathematicians’ refereeing practices limit the number of certain intentional gaps in published proofs. The results provide some new perspectives on the traditional philosophical questions of the nature of proof and of what grounds mathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Informal proof, formal proof, formalism.Alan Weir - 2016 - Review of Symbolic Logic 9 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why the Naïve Derivation Recipe Model Cannot Explain How Mathematicians’ Proofs Secure Mathematical Knowledge.Brendan Larvor - 2016 - Philosophia Mathematica 24 (3):401-404.
    The view that a mathematical proof is a sketch of or recipe for a formal derivation requires the proof to function as an argument that there is a suitable derivation. This is a mathematical conclusion, and to avoid a regress we require some other account of how the proof can establish it.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A new characterization of scientific theories.Jody Azzouni - 2014 - Synthese 191 (13):2993-3008.
    First, I discuss the older “theory-centered” and the more recent semantic conception of scientific theories. I argue that these two perspectives are nothing more than terminological variants of one another. I then offer a new theory-centered view of scientific theories. I argue that this new view captures the insights had by each of these earlier views, that it’s closer to how scientists think about their own theories, and that it better accommodates the phenomenon of inconsistent scientific theories.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Conceptual engineering for mathematical concepts.Fenner Stanley Tanswell - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 61 (8):881-913.
    ABSTRACTIn this paper I investigate how conceptual engineering applies to mathematical concepts in particular. I begin with a discussion of Waismann’s notion of open texture, and compare it to Shapiro’s modern usage of the term. Next I set out the position taken by Lakatos which sees mathematical concepts as dynamic and open to improvement and development, arguing that Waismann’s open texture applies to mathematical concepts too. With the perspective of mathematics as open-textured, I make the case that this allows us (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Visual Proofs as Counterexamples to the Standard View of Informal Mathematical Proofs?Simon Weisgerber - 2022 - In Giardino V., Linker S., Burns R., Bellucci F., Boucheix J.-M. & Viana P. (eds.), Diagrammatic Representation and Inference. 13th International Conference, Diagrams 2022, Rome, Italy, September 14–16, 2022, Proceedings. Springer, Cham. pp. 37-53.
    A passage from Jody Azzouni’s article “The Algorithmic-Device View of Informal Rigorous Mathematical Proof” in which he argues against Hamami and Avigad’s standard view of informal mathematical proof with the help of a specific visual proof of 1/2+1/4+1/8+1/16+⋯=1 is critically examined. By reference to mathematicians’ judgments about visual proofs in general, it is argued that Azzouni’s critique of Hamami and Avigad’s account is not valid. Nevertheless, by identifying a necessary condition for the visual proof to be considered a proper proof (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the unreasonable reliability of mathematical inference.Brendan Philip Larvor - 2022 - Synthese 200 (4):1-16.
    In, Jeremy Avigad makes a novel and insightful argument, which he presents as part of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs and their corresponding formal derivations. His argument considers the various strategies by means of which mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of the prodigious length, complexity and conceptual difficulty that some proofs exhibit. He takes it that showing that and how such strategies work is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Le rôle du contenu géométrique dans le raisonnement diagrammatique d'Euclide.John Mumma - 2011 - Les Etudes Philosophiques 97 (2):243.
    Rav et Leitgeb défendent la thèse de l’autonomie des preuves informelles par rapport aux systèmes formels de preuve. Azzouni, au contraire développe une explication qui réduit les preuves informelles à un réseau de systèmes formels sous-jacents. L’objectif principal de cet article est de démontrer la possibilité d’une position tierce médiane mettant en avant une explication quasi formelle de la méthode de preuve dans les Éléments. L’explication est quasi formelle, plutôt que formelle, en ce qu’elle donne au contenu géométrique un rôle (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Relationship of Derivations in Artificial Languages to Ordinary Rigorous Mathematical Proof.J. Azzouni - 2013 - Philosophia Mathematica 21 (2):247-254.
    The relationship is explored between formal derivations, which occur in artificial languages, and mathematical proof, which occurs in natural languages. The suggestion that ordinary mathematical proofs are abbreviations or sketches of formal derivations is presumed false. The alternative suggestion that the existence of appropriate derivations in formal logical languages is a norm for ordinary rigorous mathematical proof is explored and rejected.
    Download  
     
    Export citation  
     
    Bookmark   11 citations