Switch to: References

Add citations

You must login to add citations.
  1. Intrinsic Explanation and Field’s Dispensabilist Strategy.Russell Marcus - 2013 - International Journal of Philosophical Studies 21 (2):163-183.
    Philosophy of mathematics for the last half-century has been dominated in one way or another by Quine’s indispensability argument. The argument alleges that our best scientific theory quantifies over, and thus commits us to, mathematical objects. In this paper, I present new considerations which undermine the most serious challenge to Quine’s argument, Hartry Field’s reformulation of Newtonian Gravitational Theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • Van Inwagen and the Quine-Putnam indispensability argument.Mitchell O. Stokes - 2007 - Erkenntnis 67 (3):439 - 453.
    In this paper I do two things: (1) I support the claim that there is still some confusion about just what the Quine-Putnam indispensability argument is and the way it employs Quinean meta-ontology and (2) I try to dispel some of this confusion by presenting the argument in a way which reveals its important meta-ontological features, and include these features explicitly as premises. As a means to these ends, I compare Peter van Inwagen’s argument for the existence of properties with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two Weak Points of the Enhanced Indispensability Argument – Domain of the Argument and Definition of Indispensability.Vladimir Drekalović - 2016 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 23 (3):280-298.
    The contemporary Platonists in the philosophy of mathematics argue that mathematical objects exist. One of the arguments by which they support this standpoint is the so-called Enhanced Indispensability Argument (EIA). This paper aims at pointing out the difficulties inherent to the EIA. The first is contained in the vague formulation of the Argument, which is the reason why not even an approximate scope of the set objects whose existence is stated by the Argument can be established. The second problem is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The varieties of indispensability arguments.Marco Panza & Andrea Sereni - 2016 - Synthese 193 (2):469-516.
    The indispensability argument comes in many different versions that all reduce to a general valid schema. Providing a sound IA amounts to providing a full interpretation of the schema according to which all its premises are true. Hence, arguing whether IA is sound results in wondering whether the schema admits such an interpretation. We discuss in full details all the parameters on which the specification of the general schema may depend. In doing this, we consider how different versions of IA (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability and the problem of compatible explanations: A reply to ‘Should scientific realists be platonists?’.Josh Hunt - 2016 - Synthese 193 (2):451-467.
    Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Equivalent explanations and mathematical realism. Reply to “Evidence, Explanation, and Enhanced Indispensability”.Andrea Sereni - 2016 - Synthese 193 (2):423-434.
    The author of “Evidence, Explanation, Enhanced Indispensability” advances a criticism to the Enhanced Indispensability Argument and the use of Inference to the Best Explanation in order to draw ontological conclusions from mathematical explanations in science. His argument relies on the availability of equivalent though competing explanations, and a pluralist stance on explanation. I discuss whether pluralism emerges as a stable position, and focus here on two main points: whether cases of equivalent explanations have been actually offered, and which ontological consequences (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The role of pragmatic considerations during mathematical derivation in the applicability of mathematics.José Antonio Pérez-Escobar - 2024 - Philosophical Investigations 47 (4):543-557.
    The conditions involved in the applicability of mathematics in science are the subject of ongoing debates. One of the best‐received approaches is the inferential account, which involves structural mappings and pragmatic considerations in a three‐step model. According to the inferential account, these pragmatic considerations happen in the immersion and interpretation stages, but not during derivation (symbol‐pushing in a mathematical formalism). In this work, I draw inspiration from the later Wittgenstein and make the case that the applicability of mathematics also rests (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Naturalizing indispensability: a rejoinder to ‘The varieties of indispensability arguments’.Henri Galinon - 2016 - Synthese 193 (2).
    In ‘The varieties of indispensability arguments’ Marco Panza and Andrea Sereni argue that, for any clear notion of indispensability, either there is no conclusive argument for the thesis that mathematics is indispensable to science, or the notion of indispensability at hand does not support mathematical realism. In this paper, I shall not object to this main thesis directly. I shall instead try to assess in a naturalistic spirit a family of objections the authors make along the way to the use (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the Enhanced Indispensability Argument a Useful Tool in the Hands of Platonists?Vladimir Drekalović - 2019 - Philosophia 47 (4):1111-1126.
    Platonists in mathematics endeavour to prove the truthfulness of the proposal about the existence of mathematical objects. However, there have not been many explicit proofs of this proposal. One of the explicit ones is doubtlessly Baker’s Enhanced Indispensability Argument, formulated as a sort of modal syllogism. We aim at showing that the purpose of its creation – the defence of Platonist viewpoint – was not accomplished. Namely, the second premise of the Argument was imprecisely formulated, which gave space for various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Mathematics the Theory of Instantiated Structural Universals?Iulian D. Toader - 2013 - Transylvanian Review 22:132-142.
    This paper rejects metaphysical realism about structural universals as a basis for mathematical realism about numbers, and argues that one construal of structural universals via non-well-founded sets should be resisted by the mathematical realist.
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a Fictionalist Philosophy of Mathematics.Robert Knowles - 2015 - Dissertation, University of Manchester
    In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content that does not imply the existence of mathematical objects. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by (...)
    Download  
     
    Export citation  
     
    Bookmark