The article addresses the necessity of increasing the role of mathematics in the psychological intervention in problem gambling, including cognitive therapies. It also calls for interdisciplinary research with the direct contribution of mathematics. The current contributions and limitations of the role of mathematics are analysed with an eye toward the professional profiles of the researchers. An enhanced collaboration between these two disciplines is suggested and predicted.
On the question of whether gambling behavior can be changed as result of teaching gamblers the mathematics of gambling, past studies have yielded contradictory results, and a clear conclusion has not yet been drawn. In this paper, I bring some criticisms to the empirical studies that tended to answer no to this hypothesis, regarding the sampling and laboratory testing, and I argue that an optimal mathematical scholastic intervention with the objective of preventing problem gambling is possible, by providing the principles (...) that would optimize the structure and content of the teaching module. Given the ethical aspects of the exposure of mathematical facts behind games of chance, and starting from the slots case – where the parametric design is missing, we have to draw a line between ethical and optional information with respect to the mathematical content provided by a scholastic intervention. Arguing for the role of mathematics in problem-gambling prevention and treatment, interdisciplinary research directions are drawn toward implementing an optimal mathematical module in cognitive therapies. (shrink)
Aceasta nu este o carte de matematică, ci una despre matematică, care se adresează elevului sau studentului, dar şi dascălului său, cu un scop cât se poate de practic, anume acela de a iniţia şi netezi calea către înţelegerea completă a matematicii predate în şcoală. Tradiţia predării matematicii într-o abordare preponderent procedural-formală a avut ca efect o viziune deformată a elevilor asupra matematicii, ca fiind ceva strict formal, instrumental şi calculatoriu. Pierzând contactul cu baza conceptuală a matematicii, elevii dezvoltă pe (...) parcurs o "anxietate matematică" şi renunţă la a mai căuta înţelegerea matematicii, care devine "duşmanul tradiţional" din şcoală. Această lucrare şi-a propus materializarea rezultatelor cercetărilor inter- şi trans-disciplinare având ca obiect înţelegerea matematicii, care au concluzionat că domeniile care au potenţialul de a contribui în acest fel la educaţia matematicii, unificând abordările procedurală şi conceptuală, sunt epistemologia şi filosofia matematicii şi ştiinţei, precum şi fundamentele şi istoria matematicii. Aceste rezultate susţin teza că teama de matematică poate fi înlăturată prin abordarea conceptuală, iar un elev cu o bună înţelegere conceptuală va fi un rezolvitor de probleme mai bun. Autorul a identificat acele zone şi concepte aparţinând acestor discipline, care pot fi adaptate şi prelucrate în vederea familiarizării elevului sau studentului cu acest tip de cunoştinţe, care să însoţească conţinutul tradiţional al matematicii şcolare. Lucrarea a fost astfel organizată încât să contureze cititorului o imagine unificatoare asupra complexităţii naturii matematicii, precum şi o perspectivă conceptuală necesară, în final, înţelegerii de tip holistic a matematicii şcolare. Autorul vorbeşte despre matematică, pentru a convinge că a înţelege matematica înseamnă mai întâi să o înţelegem ca întreg, dar şi ca parte a unui întreg. Natura matematicii, conceptele sale primare (cum ar fi numerele şi mulţimile), structurile, limbajul, metodele, rolurile şi aplicabilitatea matematicii, sunt prezentate în conţinutul lor esenţial, iar explicarea conceptelor non-matematice este făcută într-un limbaj accesibil, însoţită de multe exemple relevante. Cartea este o unitate didactică concepută să reprezinte punctul de plecare şi un ghid de orientare către dobândirea înţelegerii de tip holistic a matematicii (pentru elev sau student) şi (pentru dascăl) către o predare de tip epistemic-conceptual, în care înţelegerea conceptuală este la fel de importantă ca antrenarea abilităţilor procedural-aplicative. (shrink)
Contemporary philosophical accounts of the applicability of mathematics in physical sciences and the empirical world are based on formalized relations between the mathematical structures and the physical systems they are supposed to represent within the models. Such relations were constructed both to ensure an adequate representation and to allow a justification of the validity of the mathematical models as means of scientific inference. This article puts in evidence the various circularities (logical, epistemic, and of definition) that are present in these (...) formal constructions and discusses them as an argument for the alternative semantic and propositional-structure accounts of the applicability of mathematics. (shrink)
Lucrarea tratează unul dintre “misterele” filosofiei analitice şi ale raţionalităţii însăşi, anume aplicabilitatea matematicii în ştiinţe şi în investigarea matematică a realităţii înconjurătoare, a cărei filosofie este dezvoltată în jurul sintagmei – de acum paradigmatice – ‘eficacitatea iraţională a matematicii’, aparţinând fizicianului Eugene Wigner, problemă filosofică etichetată în literatură drept “puzzle-ul lui Wigner”. Odată intraţi în profunzimea acestei probleme, investigaţia nu trebuie limitată la căutarea unor răspunsuri explicative la întrebări precum “Ce este de fapt aplicabilitatea matematicii?”, “Cum explicăm prezenţa în (...) natură a conceptelor matematice simple şi complexe?” sau “Cum explicăm rata de succes uriaşă a aplicaţiilor matematice, care presupun modele aproximativ false ale unei realităţi idealizate?”, ci extinsă în plan metateoretic către căutarea unei justificări teoretice a utilizării metodei matematice în practica ştiinţifică, independent de succesul acestei metode. Aceste întrebări şi probleme sunt abordate în detaliu în lucrarea de faţă. Lucrarea, care va continua cu un al doilea titlu, dedicat modelelor teoretice ale aplicabilităţii şi alternativelor structurale ale acestora, se adresează în special – dar nu exclusiv – matematicienilor, fizicienilor, filosofilor ştiinţei, filosofilor limbajului şi epistemologilor, dar şi studenţilor acestor discipline. (shrink)
Slot machines gained a high popularity despite a specific element that could limit their appeal: non-transparency with respect to mathematical parameters. The PAR sheets, exposing the parameters of the design of slot machines and probabilities associated with the winning combinations are kept secret by game producers, and the lack of data regarding the configuration of a machine prevents people from computing probabilities and other mathematical indicators. In this article, I argue that there is no rational justification for this secrecy by (...) giving two reasons, one psychological and the other mathematical. For the latter, I show that mathematics provides us with some statistical methods of retrieving the missing data, which are essential for the numerical probability computations in slots. The slots case raises the problem of the exposure of the parametric configuration and mathematical facts of any game of chance as an ethical obligation. (shrink)
Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis of (...) the knowledge attached to mathematical models of games of chance and the act of modeling, arguing that such knowledge holds potential in the prevention and cognitive treatment of excessive gambling, and I propose further research in this direction. (shrink)
Problemele filosofie sensibile pe care le pune aplicabilitatea matematicii în ştiinţe şi viaţa de zi cu zi au conturat, pe un fond interdisciplinar, o nouă “ramură” a filosofiei ştiinţei, anume filosofia aplicabilităţii matematicii. Aplicarea cu succes a matematicii de-a lungul istoriei ştiinţei necesită reprezentare, încadrare, explicaţie, dar şi o justificare de ordin metateoretic a aplicabilităţii. Între rolurile matematicii în practica ştiinţifică, rolul constitutiv teoriilor ştiinţifice este cel a cărui analiză poate contribui esenţial la această justificare. În lucrarea de faţă, am (...) analizat acest rol constitutiv prin prisma relaţiilor sale cu celelalte roluri importante ale matematicii (descriptiv-semantic-reprezentaţional, inferenţial-explicativ-predictiv), încercând să surprind motivaţia primară a acestui rol relativ la ideea de structură matematică şi epistemică, componente esenţiale ale ştiinţei structurale matematizate. (shrink)
The predisposition of the Indispensability Argument to objections, rephrasing and versions associated with the various views in philosophy of mathematics grants it a special status of a “blueprint” type rather than a debatable theme in the philosophy of science. From this point of view, it follows that the Argument has more an epistemic character than ontological.
The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I argue (...) that these metamodels employ structures of different natures and epistemologies, and this diversity does pose a serious problem to the intended justification. (shrink)
The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite this variation, (...) methodologically fundamental questions like “Which is the adequate theoretical framework for solving Wigner’s conjecture?” and “Can the logico-mathematical formalism solve it and is it entitled to do it?” did not receive answers yet. The problem of the applicability of mathematics in the physical reality has been treated unitarily in some sense, with respect to the semantic-conceptual use of the constitutive terms, within both the structural and non-structural theories. This unity (of consistency) applied to both the referred objects and concepts per se and the aims of the investigations. For being able to make an objective study of the possible alternatives of the existent theories, a foundational approach of them is needed, including through semantic-conceptual distinctions which to weaken the unity of consistency. (shrink)
This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time a “mathematical anxiety” and abandon any (...) effort to understand mathematics, which becomes their “traditional enemy” in school. This work materializes the results of the inter- and trans-disciplinary research aimed toward the understanding of mathematics, which concluded that the fields with the potential to contribute to mathematics education in this respect, by unifying the procedural and conceptual approaches, are epistemology and philosophy of mathematics and science, as well as fundamentals and history of mathematics. These results argue that students’ fear of mathematics can be annulled through a conceptual approach, and a student with a good conceptual understanding will be a better problem solver. The author has identified those zones and concepts from the above disciplines that can be adapted and processed for familiarizing the student with this type of knowledge, which should accompany the traditional content of school mathematics. The work was organized so as to create for the reader a unificatory image of the complex nature of mathematics, as well as a conceptual perspective ultimately necessary to the holistic understanding of school mathematics. The author talks about mathematics to convince readers that to understand mathematics means first to understand it as a whole, but also as part of a whole. The nature of mathematics, its primary concepts (like numbers and sets), its structures, language, methods, roles, and applicability, are all presented in their essential content, and the explanation of non-mathematical concepts is done in an accessible language and with many relevant examples. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.