Citations of:
Are there genuine mathematical explanations of physical phenomena?
Mind 114 (454):223238 (2005)
Add citations
You must login to add citations.




Evidential holism begins with something like the claim that “it is only jointly as a theory that scientific statements imply their observable consequences.” This is the holistic claim that Elliott Sober tells us is an “unexceptional observation”. But variations on this “unexceptional” claim feature as a premise in a series of controversial arguments for radical conclusions, such as that there is no analytic or synthetic distinction that the meaning of a sentence cannot be understood without understanding the whole language of (...) 

Indispensability arguments for mathematical realism are commonly traced back to Quine. We identify two different Quinean strands in the interpretation of IA, what we label the ‘logical point of view’ and the ‘theorycontribution’ point of view. Focusing on each of the latter, we offer two minimal versions of IA. These both dispense with a number of theoretical assumptions commonly thought to be relevant to IA. We then show that the attribution of both minimal arguments to Quine is controversial, and stress (...) 

Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable nonmathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...) 

Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the primenumbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...) 

Call an explanation in which a nonmathematical fact is explained—in part or in whole—by mathematical facts: an extramathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extramathematical explanation is developed. The theory is modelled on a deductivenomological theory of scientific explanation. A basic DN account of extramathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...) 

It has been recently debated whether there exists a socalled “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...) 

Platonists in mathematics endeavour to prove the truthfulness of the proposal about the existence of mathematical objects. However, there have not been many explicit proofs of this proposal. One of the explicit ones is doubtlessly Baker’s Enhanced Indispensability Argument, formulated as a sort of modal syllogism. We aim at showing that the purpose of its creation – the defence of Platonist viewpoint – was not accomplished. Namely, the second premise of the Argument was imprecisely formulated, which gave space for various (...) 

Tim travels back in time and tries to kill his grandfather before his father was born. Tim fails. But why? Lewis's response was to cite "coincidences": Tim is the unlucky subject of gun jammings, banana peels, sudden changes of heart, and so on. A number of challenges have been raised against Lewis's response. The latest of these focuses on explanation. This paper diagnoses the source of this new disgruntlement and offers an alternative explanation for Tim's failure, one that Lewis would (...) 

This paper focuses on a particular kind of nonnaturalism: moral nonnaturalism. Our primary aim is to argue that the moral nonnaturalist places herself in an invidious position if she simply accepts that the nonnatural moral facts that she posits are not explanatory. This has, hitherto, been the route that moral nonnaturalists have taken. They have attempted to make their position more palatable by pointing out that there is reason to be suspicious of the explanatory criterion of ontological commitment. That is (...) 

In this paper I will take into examination the relevance of the main indispensability arguments for the comprehension of the applicability of mathematics. I will conclude not only that none of these indispensability arguments are of any help for understanding mathematical applicability, but also that these arguments rather require a preliminary analysis of the problems raised by the applicability of mathematics in order to avoid some tricky difficulties in their formulations. As a consequence, we cannot any longer consider the applicability (...) 



“Structuralism, Fictionalism, and the Applicability of Mathematics in Science”. This article has two objectives. The first one is to review some of the most important questions in the contemporary philosophy of mathematics: What is the nature of mathematical objects? How do we acquire knowledge about these objects? Should mathematical statements be interpreted differently than ordinary ones? And, finally, how can we explain the applicability of mathematics in science? The debate that guides these reflections is the one between mathematical realism and (...) 

Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...) 

Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the QuinePutnam (...) 

This chapter examines the status of inference to the best explanation in naturalistic metaphysics. The methodology of inference to the best explanation in metaphysics is studied from the perspective of contemporary views on scientific explanation and explanatory inferences in the history and philosophy of science. This reveals serious shortcomings in prevalent attempts to vindicate metaphysical "explanationism" by reference to similarities between science and naturalistic metaphysics. This critique is brought out by considering a common gambit of methodological unity: (1) Both metaphysics (...) 



Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by ClarkeDoane, or does it bolster mathematical realism, as authors such as Joyce and SinnottArmstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...) 

In recent years, metaphysics has undergone what some describe as a revolution: it has become standard to understand a vast array of questions as questions about grounding, a metaphysical notion of determination. Why should we believe in grounding, though? Supporters of the revolution often gesture at what I call the Argument from Explanatoriness: the notion of grounding is somehow indispensable to a metaphysical type of explanation. I challenge this argument and along the way develop a “reactionary” view, according to which (...) 

This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...) 

In Metaphysics A, Aristotle offers some objections to Plato’s theory of Forms to the effect that Plato’s Forms would not be explanatory in the right way, and seems to suggest that they might even make the explanatory project worse. One interesting historical puzzle is whether Aristotle can avoid these same objections to his own theory of universals. The concerns Aristotle raises are, I think, cousins of contemporary concerns about the usefulness and explanatoriness of abstract objects, some of which have recently (...) 

In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...) 

Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist. 

Explanation is asymmetric: if A explains B, then B does not explain A. Tradition ally, the asymmetry of explanation was thought to favor causal accounts of explanation over their rivals, such as those that take explanations to be inferences. In this paper, we develop a new inferential approach to explanation that outperforms causal approaches in accounting for the asymmetry of explanation. 

This paper addresses a fundamental line of research in neuroscience: the identification of a putative neural processing core of the cerebral cortex, often claimed to be “canonical”. This “canonical” core would be shared by the entire cortex, and would explain why it is so powerful and diversified in tasks and functions, yet so uniform in architecture. The purpose of this paper is to analyze the search for canonical explanations over the past 40 years, discussing the theoretical frameworks informing this research. (...) 

Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...) 

A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...) 

According to a widespread view in metaphysics and philosophy of science (the “Dependence Thesis”), all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewingas explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper (...) 

This paper concerns the relation between a proof’s beauty and its explanatory power – that is, its capacity to go beyond proving a given theorem to explaining why that theorem holds. Explanatory power and beauty are among the many virtues that mathematicians value and seek in various proofs, and it is important to come to a better understanding of the relations among these virtues. Mathematical practice has long recognized that certain proofs but not others have explanatory power, and this paper (...) 

Enhanced indispensability arguments claim that Scientific Realists are committed to the existence of mathematical entities due to their reliance on Inference to the best explanation. Our central question concerns this purported parity of reasoning: do people who defend the EIA make an appropriate use of the resources of Scientific Realism to achieve platonism? We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should (...) 

Saatsi’s minimal realism holds that science makes theoretical progress. It is designed to get around the pessimistic induction, to fall between scientific realism and instrumentalism, and to explain the success of scientific theories. I raise the following two objections to it. First, it is not clear whether minimal realism lies between realism and instrumentalism, given that minimal realism does not entail instrumentalism. Second, it is not clear whether minimal realism can explain the success of scientific theories, given that it is (...) 

Recently some philosophers (e.g. ShaferLandau 2003; Wedgwood 2007) suggest an exclusion problem for moral nonnaturalism, which is similar to the exclusion problem in the philosophy of mind. In this paper, I aim to advance the discussion of exclusion in morality by investigating two influential solutions to the exclusion problem: the autonomy solution and the overdetermination solution. I attempt to show that the moral nonnaturalist can solve the exclusion problem in a way that is different from the approach to solving mentalphysical (...) 

Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...) 

Putnam rejects having argued in the terms of the argument known in the literature as “the QuinePutnam indispensability argument”. He considers that mathematics contribution to physics does not have to be interpreted in platonist terms but in his favorite modal variety. The purpose of this paper is to consider Putnam’s acknowledged argument and philosophical position against contemporary so called in the literature ‘fictionalist’ views about applied mathematics. The conclusion will be that the account of the applicability of mathematics that stems (...) 

This paper discusses Baker’s Enhanced Indispensability Argument for mathematical realism on the basis of the indispensable role mathematics plays in scientific explanations of physical facts, along with various responses to it. I argue that there is an analogue of causal explanation for mathematics which, of several basic types of explanation, holds the most promise for use in the EIA. I consider a plausible case where mathematics plays an explanatory role in this sense, but argue that such use still does not (...) 

The question as to whether there are mathematical explanations of physical phenomena has recently received a great deal of attention in the literature. The answer is potentially relevant for the ontology of mathematics; if affirmative, it would support a new version of the indispensability argument for mathematical realism. In this article, I first review critically a few examples of such explanations and advance a general analysis of the desiderata to be satisfied by them. Second, in an attempt to strengthen the (...) 

It is usually supposed that the central limit theorem explains why various quantities we find in nature are approximately normally distributed—people's heights, examination grades, snowflake sizes, and so on. This sort of explanation is found in many textbooks across the sciences, particularly in biology, economics, and sociology. Contrary to this received wisdom, I argue that in many cases we are not justified in claiming that the central limit theorem explains why a particular quantity is normally distributed, and that in some (...) 

A finergrained delineation of a given explanandum reveals a nexus of closely related causal and non causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the LotkaVolterra equations. There (...) 

There are lots of arguments for, or justifications of, mathematical theorems that make use of principles from physics. Do any of these constitute explanations? On the one hand, physical principles do not seem like they should be explanatorily relevant; on the other, some particular examples of physical justifications do look explanatory. In this article, I defend the idea that physical justifications can and do explain mathematical facts. 1 Physical Arguments for Mathematical Truths2 Preview3 Mathematical Facts4 Purity5 Doubts about Purity: I6 (...) 

Certain scientific explanations of physical facts have recently been characterized as distinctively mathematical –that is, as mathematical in a different way from ordinary explanations that employ mathematics. This article identifies what it is that makes some scientific explanations distinctively mathematical and how such explanations work. These explanations are noncausal, but this does not mean that they fail to cite the explanandum’s causes, that they abstract away from detailed causal histories, or that they cite no natural laws. Rather, in these explanations, (...) 

The Enhanced Indispensability Argument (Baker [ 2009 ]) exemplifies the new wave of the indispensability argument for mathematical Platonism. The new wave capitalizes on mathematics' role in scientific explanations. I will criticize some analyses of mathematics' explanatory function. In turn, I will emphasize the representational role of mathematics, and argue that the debate would significantly benefit from acknowledging this alternative viewpoint to mathematics' contribution to scientific explanations and knowledge. 

In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content that does not imply the existence of mathematical objects. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by (...) 

The discussion on mathematical explanation has inherited the same sense of dissatisfaction that philosophers of science expressed, in the context of scientific explanation, towards the deductivenomological model. This model is regarded as unable to cover cases of bona fide mathematical explanations and, furthermore, it is largely ignored in the relevant literature. Surprisingly, the reasons for this ostracism are not sufficiently manifest. In this paper I explore a possible extension of the model to the case of mathematical explanations and I claim (...) 

What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: protomoral beliefs differ substantially between animal species, whereas protomathematical beliefs (at least in the animals studied) seem to show more similarities. This makes moral (...) 

Philosophers and mathematicians have different ideas about the difference between pure and applied mathematics. This should not surprise us, since they have different aims and interests. For mathematicians, pure mathematics is the interesting stuff, even if it has lots of physics involved. This has the consequence that picturesque examples play a role in motivating and justifying mathematical results. Philosophers might find this upsetting, but we find a parallel to mathematician’s attitudes in ethics, which, I argue, is a much better model (...) 

An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductivemathematical account, because it is modelled on the deductivenomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...) 

When considering mathematical realism, some scientific realists reject it, and express sympathy for the opposite view, mathematical nominalism; moreover, many justify this option by invoking the causal inertness of mathematical objects. The main aim of this note is to show that the scientific realists’ endorsement of this causal mathematical nominalism is in tension with another position some of them also accept, the doctrine of methodological naturalism. By highlighting this conflict, I intend to tip the balance in favor of a rival (...) 

According to one popular nominalist picture, even when mathematics features indispensably in scientific explanations, this mathematics plays only a purely representational role: physical facts are represented, and these exclusively carry the explanatory load. I think that this view is mistaken, and that there are cases where mathematics itself plays an explanatory role. I distinguish two kinds of explanatory generality: scope generality and topic generality. Using the wellknown periodicalcicada example, and also a new case study involving bicycle gears, I argue that (...) 

Aesthetics in philosophy of mathematics is too narrowly construed. Beauty is not the only feature in mathematics that is arguably aesthetic. While not the highest aesthetic value, being interesting is a sine qua non for publishability. Of the many ways to be interesting, being explanatory has recently been discussed. The motivational power of what is interesting is important for both directing research and stimulating education. The scientific satisfaction of curiosity and the artistic desire for beautiful results are complementary but both (...) 