Citations of:
Inference to the best explanation and mathematical realism
Synthese 160 (1):1320 (2008)
Add citations
You must login to add citations.


Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...) 

The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam’s ‘no miracles argument’ that, I argue, many string theorists in fact espouse in some form or other. String theory has generated many surprising, useful, and wellconfirmed mathematical ‘predictions’—here I focus on mirror symmetry and the mirror theorem. These predictions (...) 

A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; antirealists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Antirealists claim there is nothing mathematics can (...) 

Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the primenumbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...) 

In this paper I shall adopt a possible reading of the notions of ‘explanatory indispensability’ and ‘genuine mathematical explanation in science’ on which the Enhanced Indispensability Argument proposed by Alan Baker is based. Furthermore, I shall propose two examples of mathematical explanation in science and I shall show that, whether the EIApartisans accept the reading I suggest, they are easily caught in a dilemma. To escape this dilemma they need to adopt some account of explanation and offer a plausible answer (...) 

Enhanced indispensability arguments seek to establish realism about mathematics based on the explanatory role that mathematics plays in science. Idealizations pose a problem for such arguments. Idealizations, in a similar way to mathematics, boost the explanatory credentials of our best scientific theories. And yet, idealizations are not the sorts of things that are supposed to attract a realist attitude. I argue that the explanatory symmetry between idealizations and mathematics can potentially be broken as follows: although idealizations contribute to the explanatory (...) 

The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra mathematical explanation. In this paper, I identify a new case of extra mathematical explanation, involving the search patterns of fullyaquatic marine predators. I go on to use this case to predict the prevalence of extra mathematical explanation in science. 

Enhanced indispensability arguments claim that Scientific Realists are committed to the existence of mathematical entities due to their reliance on Inference to the best explanation. Our central question concerns this purported parity of reasoning: do people who defend the EIA make an appropriate use of the resources of Scientific Realism to achieve platonism? We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should (...) 

When the indispensability argument for mathematical entities (IA) is spelled out, it would appear confirmational holism is needed for the argument to work. It has been argued that confirmational holism is a dispensable premise in the argument if a construal of naturalism, according to which it is denied that we can take different epistemic attitudes towards different parts of our scientific theories, is adopted. I argue that the suggested variety of naturalism will only appeal to a limited number of philosophers. (...) 

The author of “Evidence, Explanation, Enhanced Indispensability” advances a criticism to the Enhanced Indispensability Argument and the use of Inference to the Best Explanation in order to draw ontological conclusions from mathematical explanations in science. His argument relies on the availability of equivalent though competing explanations, and a pluralist stance on explanation. I discuss whether pluralism emerges as a stable position, and focus here on two main points: whether cases of equivalent explanations have been actually offered, and which ontological consequences (...) 

An emphasis on explanatory contribution is central to a recent formulation of the indispensability argument for mathematical realism. Because scientific realism is argued for by means of inference to the best explanation, it has been further argued that being a scientific realist entails a commitment to IA and thus to mathematical realism. It has, however, gone largely unnoticed that the way that IBE is argued to be truth conducive involves citing successful applications of IBE and tracing this success over time. (...) 

Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...) 

The indispensability argument is a method for showing that abstract mathematical objects exist. Various versions of this argument have been proposed. Lately, commentators seem to have agreed that a holistic indispensability argument will not work, and that an explanatory indispensability argument is the best candidate. In this paper I argue that the dominant reasons for rejecting the holistic indispensability argument are mistaken. This is largely due to an overestimation of the consequences that follow from evidential holism. Nevertheless, the holistic indispensability (...) 



Baker claims to provide an example of mathematical explanation of an empirical phenomenon which leads to ontological commitment to mathematical objects. This is meant to show that the positing of mathematical entities is necessary for satisfactory scientific explanations and thus that the application of mathematics to science can be used, at least in some cases, to support mathematical realism. In this paper I show that the example of explanation Baker considers can actually be given without postulating mathematical objects and thus (...) 

Call an explanation in which a nonmathematical fact is explained—in part or in whole—by mathematical facts: an extramathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this paper, a theory of extramathematical explanation is developed. The theory is modelled on a deductivenomological theory of scientific explanation. A basic DN account of extramathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...) 

The indispensability argument comes in many different versions that all reduce to a general valid schema. Providing a sound IA amounts to providing a full interpretation of the schema according to which all its premises are true. Hence, arguing whether IA is sound results in wondering whether the schema admits such an interpretation. We discuss in full details all the parameters on which the specification of the general schema may depend. In doing this, we consider how different versions of IA (...) 



In this article I consider what it would take to combine a certain kind of mathematical Platonism with serious presentism. I argue that a Platonist moved to accept the existence of mathematical objects on the basis of an indispensability argument faces a significant challenge if she wishes to accept presentism. This is because, on the one hand, the indispensability argument can be reformulated as a new argument for the existence of past entities and, on the other hand, if one accepts (...) 