Citations of:
Inference to the best explanation and mathematical realism
Synthese 160 (1):1320 (2008)
Add citations
You must login to add citations.




The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam’s ‘no miracles argument’ that, I argue, many string theorists in fact espouse in some form or other. String theory has generated many surprising, useful, and wellconfirmed mathematical ‘predictions’—here I focus on mirror symmetry and the mirror theorem. These predictions (...) 

Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...) 

The indispensability argument is a method for showing that abstract mathematical objects exist. Various versions of this argument have been proposed. Lately, commentators seem to have agreed that a holistic indispensability argument will not work, and that an explanatory indispensability argument is the best candidate. In this paper I argue that the dominant reasons for rejecting the holistic indispensability argument are mistaken. This is largely due to an overestimation of the consequences that follow from evidential holism. Nevertheless, the holistic indispensability (...) 

Call an explanation in which a nonmathematical fact is explained—in part or in whole—by mathematical facts: an extramathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extramathematical explanation is developed. The theory is modelled on a deductivenomological theory of scientific explanation. A basic DN account of extramathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...) 

An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductivemathematical account, because it is modelled on the deductivenomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...) 

The new explanatory or enhanced indispensability argument alleges that our mathematical beliefs are justified by their indispensable appearances in scientific explanations. This argument differs from the standard indispensability argument which focuses on the uses of mathematics in scientific theories. I argue that the new argument depends for its plausibility on an equivocation between two senses of explanation. On one sense the new argument is an oblique restatement of the standard argument. On the other sense, it is vulnerable to an instrumentalist (...) 

The contemporary Platonists in the philosophy of mathematics argue that mathematical objects exist. One of the arguments by which they support this standpoint is the socalled Enhanced Indispensability Argument (EIA). This paper aims at pointing out the difficulties inherent to the EIA. The first is contained in the vague formulation of the Argument, which is the reason why not even an approximate scope of the set objects whose existence is stated by the Argument can be established. The second problem is (...) 

Enhanced indispensability arguments claim that Scientific Realists are committed to the existence of mathematical entities due to their reliance on Inference to the best explanation. Our central question concerns this purported parity of reasoning: do people who defend the EIA make an appropriate use of the resources of Scientific Realism to achieve platonism? We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should (...) 

The question as to whether there are mathematical explanations of physical phenomena has recently received a great deal of attention in the literature. The answer is potentially relevant for the ontology of mathematics; if affirmative, it would support a new version of the indispensability argument for mathematical realism. In this article, I first review critically a few examples of such explanations and advance a general analysis of the desiderata to be satisfied by them. Second, in an attempt to strengthen the (...) 

Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it. 

This dissertation is a defence of metaphysical ethical naturalism according to which there is a moral reality which is part of the natural world. The implication of this view is that moral properties, such as moral goodness, justice, compassion and so forth are part of the natural world, and inquiries concerning these moral entities are conducted in similar empirical ways of reasoning to that in which scientific inquiries are conducted. I defend metaphysical ethical naturalism by a variety of explanationist argument (...) 

Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...) 

In this dissertation, I consider from a philosophical perspective three related questions concerning the contribution of mathematics to scientific representation. In answering these questions, I propose and defend Carnapian frameworks for examination into the nature and role of mathematics in science. The first research question concerns the varied ways in which mathematics contributes to scientific representation. In response, I consider in Chapter 2 two recent philosophical proposals claiming to account for the explanatory role of mathematics in science, by Philip Kitcher, (...) 

A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; antirealists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Antirealists claim there is nothing mathematics can (...) 

An emphasis on explanatory contribution is central to a recent formulation of the indispensability argument for mathematical realism. Because scientific realism is argued for by means of inference to the best explanation, it has been further argued that being a scientific realist entails a commitment to IA and thus to mathematical realism. It has, however, gone largely unnoticed that the way that IBE is argued to be truth conducive involves citing successful applications of IBE and tracing this success over time. (...) 

The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra mathematical explanation. In this paper, I identify a new case of extra mathematical explanation, involving the search patterns of fullyaquatic marine predators. I go on to use this case to predict the prevalence of extra mathematical explanation in science. 

Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...) 

Baker claims to provide an example of mathematical explanation of an empirical phenomenon which leads to ontological commitment to mathematical objects. This is meant to show that the positing of mathematical entities is necessary for satisfactory scientific explanations and thus that the application of mathematics to science can be used, at least in some cases, to support mathematical realism. In this paper I show that the example of explanation Baker considers can actually be given without postulating mathematical objects and thus (...) 

Platonism is the view that there exist such things as abstract objects — where an abstract object is an object that does not exist in space or time and which is therefore entirely nonphysical and nonmental. Platonism in this sense is a contemporary view. It is obviously related to the views of Plato in important ways, but it is not entirely clear that Plato endorsed this view, as it is defined here. In order to remain neutral on this question, the (...) 

Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the primenumbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...) 

According to one popular nominalist picture, even when mathematics features indispensably in scientific explanations, this mathematics plays only a purely representational role: physical facts are represented, and these exclusively carry the explanatory load. I think that this view is mistaken, and that there are cases where mathematics itself plays an explanatory role. I distinguish two kinds of explanatory generality: scope generality and topic generality. Using the wellknown periodicalcicada example, and also a new case study involving bicycle gears, I argue that (...) 

In this paper I shall adopt a possible reading of the notions of ‘explanatory indispensability’ and ‘genuine mathematical explanation in science’ on which the Enhanced Indispensability Argument proposed by Alan Baker is based. Furthermore, I shall propose two examples of mathematical explanation in science and I shall show that, whether the EIApartisans accept the reading I suggest, they are easily caught in a dilemma. To escape this dilemma they need to adopt some account of explanation and offer a plausible answer (...) 

Enhanced indispensability arguments seek to establish realism about mathematics based on the explanatory role that mathematics plays in science. Idealizations pose a problem for such arguments. Idealizations, in a similar way to mathematics, boost the explanatory credentials of our best scientific theories. And yet, idealizations are not the sorts of things that are supposed to attract a realist attitude. I argue that the explanatory symmetry between idealizations and mathematics can potentially be broken as follows: although idealizations contribute to the explanatory (...) 

When the indispensability argument for mathematical entities (IA) is spelled out, it would appear confirmational holism is needed for the argument to work. It has been argued that confirmational holism is a dispensable premise in the argument if a construal of naturalism, according to which it is denied that we can take different epistemic attitudes towards different parts of our scientific theories, is adopted. I argue that the suggested variety of naturalism will only appeal to a limited number of philosophers. (...) 

The author of “Evidence, Explanation, Enhanced Indispensability” advances a criticism to the Enhanced Indispensability Argument and the use of Inference to the Best Explanation in order to draw ontological conclusions from mathematical explanations in science. His argument relies on the availability of equivalent though competing explanations, and a pluralist stance on explanation. I discuss whether pluralism emerges as a stable position, and focus here on two main points: whether cases of equivalent explanations have been actually offered, and which ontological consequences (...) 



The indispensability argument comes in many different versions that all reduce to a general valid schema. Providing a sound IA amounts to providing a full interpretation of the schema according to which all its premises are true. Hence, arguing whether IA is sound results in wondering whether the schema admits such an interpretation. We discuss in full details all the parameters on which the specification of the general schema may depend. In doing this, we consider how different versions of IA (...) 



In this article I consider what it would take to combine a certain kind of mathematical Platonism with serious presentism. I argue that a Platonist moved to accept the existence of mathematical objects on the basis of an indispensability argument faces a significant challenge if she wishes to accept presentism. This is because, on the one hand, the indispensability argument can be reformulated as a new argument for the existence of past entities and, on the other hand, if one accepts (...) 