Switch to: References

Add citations

You must login to add citations.
  1. Quantum fictivism.Vera Matarese - 2024 - European Journal for Philosophy of Science 14 (3):1-27.
    Quantum mechanics is arguably our most successful physical theory, yet the nature of the quantum state still constitutes an ongoing controversy. This paper proposes, articulates, and defends a metaphysical interpretation of the quantum state that is fictionalist in spirit since it regards quantum states as representing a fictional ontology. Such an ontology is therefore not physical, and yet it provides a reference for the language used in quantum mechanics and has explanatory power. In this sense, this view, akin to Allori’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstract Objects.David Liggins - 2024 - Cambridge: Cambridge University Press.
    Philosophers often debate the existence of such things as numbers and propositions, and say that if these objects exist, they are abstract. But what does it mean to call something 'abstract'? And do we have good reason to believe in the existence of abstract objects? This Element addresses those questions, putting newcomers to these debates in a position to understand what they concern and what are the most influential considerations at work in this area of metaphysics. It also provides advice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a topological philosophy.Bartłomiej Skowron, Janusz Kaczmarek & Krzysztof Wójtowicz - 2023 - Metaphilosophy 54 (5):679-696.
    This article examines the use of mathematical concepts in philosophy, focusing on topology, which may be viewed as a modern supplement to geometry. We show that Plato and Parmenides were already employing geometric ideas in their research, and discuss three examples of the application of topology to philosophical problems: the first concerns the analysis of the Cartesian distinction between res extensa and res cogitans, the second the ontology of possible worlds of Wittgenstein's Tractatus, and the third Leibniz's monadology. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Design principles and mechanistic explanation.Wei Fang - 2022 - History and Philosophy of the Life Sciences 44 (4):1-23.
    In this essay I propose that what design principles in systems biology and systems neuroscience do is to present abstract characterizations of mechanisms, and thereby facilitate mechanistic explanation. To show this, one design principle in systems neuroscience, i.e., the multilayer perceptron, is examined. However, Braillard contends that design principles provide a sort of non-mechanistic explanation due to two related reasons: they are very general and describe non-causal dependence relationships. In response to this, I argue that, on the one hand, all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Quinean Reformulation of Fregean Arguments.Nathaniel Gan - 2023 - Acta Analytica 38 (3):481-494.
    In ontological debates, realists typically argue for their view via one of two approaches. The _Quinean approach_ employs naturalistic arguments that say our scientific practices give us reason to affirm the existence of a kind of entity. The _Fregean approach_ employs linguistic arguments that say we should affirm the existence of a kind of entity because our discourse contains reference to those entities. These two approaches are often seen as distinct, with _indispensability arguments_ typically associated with the former, but not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Explanation: A Pythagorean Proposal.Sam Baron - 2024 - British Journal for the Philosophy of Science 75 (3):663-685.
    Mathematics appears to play an explanatory role in science. This, in turn, is thought to pave a way toward mathematical Platonism. A central challenge for mathematical Platonists, however, is to provide an account of how mathematical explanations work. I propose a property-based account: physical systems possess mathematical properties, which either guarantee the presence of other mathematical properties and, by extension, the physical states that possess them; or rule out other mathematical properties, and their associated physical states. I explain why Platonists (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Extra-Mathematical Program Explanation of Color Experience.Nicholas Danne - 2020 - International Studies in the Philosophy of Science 33 (3):153-173.
    In the debate over whether mathematical facts, properties, or entities explain physical events (in what philosophers call “extra-mathematical” explanations), Aidan Lyon’s (2012) affirmative answer stands out for its employment of the program explanation (PE) methodology of Frank Jackson and Philip Pettit (1990). Juha Saatsi (2012; 2016) objects, however, that Lyon’s examples from the indispensabilist literature are (i) unsuitable for PE, (ii) nominalizable into non-mathematical terms, and (iii) mysterious about the explanatory relation alleged to obtain between the PE’s mathematical explanantia and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Against Methodological Continuity and Metaphysical Knowledge.Simon Allzén - 2023 - European Journal for Philosophy of Science 13 (1):1-20.
    The main purpose of this paper is to refute the metaphysicians ‘methodological continuation’ argument supporting epistemic realism in metaphysics. This argument aims to show that scientific realists have to accept that metaphysics is as rationally justified as science given that they both employ inference to the best explanation, i.e. that metaphysics and science are methodologically continuous. I argue that the reasons given by scientific realists as to why inference to the best explanation is reliable in science do not constitute a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unification and mathematical explanation in science.Sam Baron - 2021 - Synthese 199 (3-4):7339-7363.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representational indispensability and ontological commitment.John Heron - 2020 - Thought: A Journal of Philosophy 9 (2):105-114.
    Recent debates about mathematical ontology are guided by the view that Platonism's prospects depend on mathematics' explanatory role in science. If mathematics plays an explanatory role, and in the right kind of way, this carries ontological commitment to mathematical objects. Conversely, the assumption goes, if mathematics merely plays a representational role then our world-oriented uses of mathematics fail to commit us to mathematical objects. I argue that it is a mistake to think that mathematical representation is necessarily ontologically innocent and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Counterfactual Approach to Explanation in Mathematics.Sam Baron, Mark Colyvan & David Ripley - 2020 - Philosophia Mathematica 28 (1):1-34.
    ABSTRACT Our goal in this paper is to extend counterfactual accounts of scientific explanation to mathematics. Our focus, in particular, is on intra-mathematical explanations: explanations of one mathematical fact in terms of another. We offer a basic counterfactual theory of intra-mathematical explanations, before modelling the explanatory structure of a test case using counterfactual machinery. We finish by considering the application of counterpossibles to mathematical explanation, and explore a second test case along these lines.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mathematical surrealism as an alternative to easy-road fictionalism.Kenneth Boyce - 2020 - Philosophical Studies 177 (10):2815-2835.
    Easy-road mathematical fictionalists grant for the sake of argument that quantification over mathematical entities is indispensable to some of our best scientific theories and explanations. Even so they maintain we can accept those theories and explanations, without believing their mathematical components, provided we believe the concrete world is intrinsically as it needs to be for those components to be true. Those I refer to as “mathematical surrealists” by contrast appeal to facts about the intrinsic character of the concrete world, not (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Estructuralismo, ficcionalismo, y la aplicabilidad de las matemáticas en ciencia.Manuel Barrantes - 2019 - Areté. Revista de Filosofía 31 (1):7-34.
    “Structuralism, Fictionalism, and the Applicability of Mathematics in Science”. This article has two objectives. The first one is to review some of the most important questions in the contemporary philosophy of mathematics: What is the nature of mathematical objects? How do we acquire knowledge about these objects? Should mathematical statements be interpreted differently than ordinary ones? And, finally, how can we explain the applicability of mathematics in science? The debate that guides these reflections is the one between mathematical realism and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The uncanny accuracy of God's mathematical beliefs.Robert Knowles - 2021 - Religious Studies 57 (2):333-352.
    I show how mathematical platonism combined with belief in the God of classical theism can respond to Field's epistemological objection. I defend an account of divine mathematical knowledge by showing that it falls out of an independently motivated general account of divine knowledge. I use this to explain the accuracy of God's mathematical beliefs, which in turn explains the accuracy of our own. My arguments provide good news for theistic platonists, while also shedding new light on Field's influential objection.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Counterfactual Scheming.Sam Baron - 2020 - Mind 129 (514):535-562.
    Mathematics appears to play a genuine explanatory role in science. But how do mathematical explanations work? Recently, a counterfactual approach to mathematical explanation has been suggested. I argue that such a view fails to differentiate the explanatory uses of mathematics within science from the non-explanatory uses. I go on to offer a solution to this problem by combining elements of the counterfactual theory of explanation with elements of a unification theory of explanation. The result is a theory according to which (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The End of Mystery.Sam Baron & Mark Colyvan - 2019 - American Philosophical Quarterly 56 (3):247-264.
    Tim travels back in time and tries to kill his grandfather before his father was born. Tim fails. But why? Lewis's response was to cite "coincidences": Tim is the unlucky subject of gun jammings, banana peels, sudden changes of heart, and so on. A number of challenges have been raised against Lewis's response. The latest of these focuses on explanation. This paper diagnoses the source of this new disgruntlement and offers an alternative explanation for Tim's failure, one that Lewis would (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Spandrels.Alan Baker - 2017 - Australasian Journal of Philosophy 95 (4):779-793.
    The aim of this paper is to open a new front in the debate between platonism and nominalism by arguing that the degree of explanatory entanglement of mathematics in science is much more extensive than has been hitherto acknowledged. Even standard examples, such as the prime life cycles of periodical cicadas, involve a penumbra of mathematical features whose presence can only be explained using relatively sophisticated mathematics. I introduce the term ‘mathematical spandrel’ to describe these penumbral properties, and focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Dynamical Systems Theory and Explanatory Indispensability.Juha Saatsi - 2017 - Philosophy of Science 84 (5):892-904.
    I examine explanations’ realist commitments in relation to dynamical systems theory. First I rebut an ‘explanatory indispensability argument’ for mathematical realism from the explanatory power of phase spaces (Lyon and Colyvan 2007). Then I critically consider a possible way of strengthening the indispensability argument by reference to attractors in dynamical systems theory. The take-home message is that understanding of the modal character of explanations (in dynamical systems theory) can undermine platonist arguments from explanatory indispensability.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Explanatory Abstractions.Lina Jansson & Juha Saatsi - 2019 - British Journal for the Philosophy of Science 70 (3):817–844.
    A number of philosophers have recently suggested that some abstract, plausibly non-causal and/or mathematical, explanations explain in a way that is radically dif- ferent from the way causal explanation explain. Namely, while causal explanations explain by providing information about causal dependence, allegedly some abstract explanations explain in a way tied to the independence of the explanandum from the microdetails, or causal laws, for example. We oppose this recent trend to regard abstractions as explanatory in some sui generis way, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The explanatory dispensability of idealizations.Sam Baron - 2016 - Synthese 193 (2):365-386.
    Enhanced indispensability arguments seek to establish realism about mathematics based on the explanatory role that mathematics plays in science. Idealizations pose a problem for such arguments. Idealizations, in a similar way to mathematics, boost the explanatory credentials of our best scientific theories. And yet, idealizations are not the sorts of things that are supposed to attract a realist attitude. I argue that the explanatory symmetry between idealizations and mathematics can potentially be broken as follows: although idealizations contribute to the explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Why are Normal Distributions Normal?Aidan Lyon - 2014 - British Journal for the Philosophy of Science 65 (3):621-649.
    It is usually supposed that the central limit theorem explains why various quantities we find in nature are approximately normally distributed—people's heights, examination grades, snowflake sizes, and so on. This sort of explanation is found in many textbooks across the sciences, particularly in biology, economics, and sociology. Contrary to this received wisdom, I argue that in many cases we are not justified in claiming that the central limit theorem explains why a particular quantity is normally distributed, and that in some (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Optimisation and mathematical explanation: doing the Lévy Walk.Sam Baron - 2014 - Synthese 191 (3).
    The indispensability argument seeks to establish the existence of mathematical objects. The success of the indispensability argument turns on finding cases of genuine extra- mathematical explanation. In this paper, I identify a new case of extra- mathematical explanation, involving the search patterns of fully-aquatic marine predators. I go on to use this case to predict the prevalence of extra- mathematical explanation in science.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Indispensability arguments in the philosophy of mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these theories is also varied. (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Exploring the Philosophy of Mathematics: Beyond Logicism and Platonism.Richard Startup - 2024 - Open Journal of Philosophy 14 (2):219-243.
    A perspective in the philosophy of mathematics is developed from a consideration of the strengths and limitations of both logicism and platonism, with an early focus on Frege’s work. Importantly, although many set-theoretic structures may be developed each of which offers limited isomorphism with the system of natural numbers, no one of them may be identified with it. Furthermore, the timeless, ever present nature of mathematical concepts and results itself offers direct access, in the face of a platonist account which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical problem-solving in scientific practice.Davide Rizza - 2021 - Synthese 199 (5-6):13621-13641.
    In this paper I study the activity of mathematical problem-solving in scientific practice, focussing on enquiries in mathematical social science. I identify three salient phases of mathematical problem-solving and adopt them as a reference frame to investigate aspects of applications that have not yet received extensive attention in the philosophical literature.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unifying statistically autonomous and mathematical explanations.Travis L. Holmes - 2021 - Biology and Philosophy 36 (3):1-22.
    A subarea of the debate over the nature of evolutionary theory addresses what the nature of the explanations yielded by evolutionary theory are. The statisticalist line is that the general principles of evolutionary theory are not only amenable to a mathematical interpretation but that they need not invoke causes to furnish explanations. Causalists object that construction of these general principles involves crucial causal assumptions. A recent view claims that some biological explanations are statistically autonomous explanations (SAEs) whereby phenomena are accounted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Distinctively mathematical explanation and the problem of directionality: A quasi-erotetic solution.Travis L. Holmes - 2021 - Studies in History and Philosophy of Science Part A 87 (C):13-21.
    The increasing preponderance of opinion that some natural phenomena can be explained mathematically has inspired a search for a viable account of distinctively mathematical explanation. Among the desiderata for an adequate account is that it should solve the problem of directionality and the reversals of distinctively mathematical explanations should not count as members among the explanatory fold but any solution must also avoid the exclusion of genuine explanations. In what follows, I introduce and defend what I refer to as a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explicação Matemática.Eduardo Castro - 2020 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    Opinionated state of the art paper on mathematical explanation. After a general introduction to the subject, the paper is divided into two parts. The first part is dedicated to intra-mathematical explanation and the second is dedicated to extra-mathematical explanation. Each of these parts begins to present a set of diverse problems regarding each type of explanation and, afterwards, it analyses relevant models of the literature. Regarding the intra-mathematical explanation, the models of deformable proofs, mathematical saliences and the demonstrative structure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The indispensability argument and the nature of mathematical objects.Matteo Plebani - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):249-263.
    I will contrast two conceptions of the nature of mathematical objects: the conception of mathematical objects as preconceived objects, and heavy duty platonism. I will argue that friends of the indispensability argument are committed to some metaphysical theses and that one promising way to motivate such theses is to adopt heavy duty platonism. On the other hand, combining the indispensability argument with the conception of mathematical objects as preconceived objects yields an unstable position. The conclusion is that the metaphysical commitments (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arbiters of Truth and Existence.Nathaniel Gan - 2024 - European Journal of Analytic Philosophy 20 (1):1-23.
    Call the epistemological grounds on which we rationally should determine our ontological (or alethiological) commitments regarding an entity its arbiter of existence (or arbiter of truth). It is commonly thought that arbiters of existence and truth can be provided by our practices. This paper argues that such views have several implications: (1) the relation of arbiters to our metaphysical commitments consists in indispensability, (2) realist views about a kind of entity should take the kinds of practices providing that entity’s arbiters (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Functional Approach to Ontology.Nathaniel Gan - 2021 - Metaphysica 22 (1):23-43.
    There are two ways of approaching an ontological debate: ontological realism recommends that metaphysicians seek to discover deep ontological facts of the matter, while ontological anti-realism denies that there are such facts; both views sometimes run into difficulties. This paper suggests an approach to ontology that begins with conceptual analysis and takes the results of that analysis as a guide for which metaontological view to hold. It is argued that in some cases, the functions for which we employ a part (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability and the problem of compatible explanations: A reply to ‘Should scientific realists be platonists?’.Josh Hunt - 2016 - Synthese 193 (2):451-467.
    Alan Baker’s enhanced indispensability argument supports mathematical platonism through the explanatory role of mathematics in science. Busch and Morrison defend nominalism by denying that scientific realists use inference to the best explanation to directly establish ontological claims. In response to Busch and Morrison, I argue that nominalists can rebut the EIA while still accepting Baker’s form of IBE. Nominalists can plausibly require that defenders of the EIA establish the indispensability of a particular mathematical entity. Next, I argue that IBE cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Application of the Honeycomb Conjecture to the Bee’s Honeycomb.Tim Räz - 2013 - Philosophia Mathematica 21 (3):351-360.
    In a recent paper, Aidan Lyon and Mark Colyvan have proposed an explanation of the structure of the bee's honeycomb based on the mathematical Honeycomb Conjecture. This explanation has instantly become one of the standard examples in the philosophical debate on mathematical explanations of physical phenomena. In this critical note, I argue that the explanation is not scientifically adequate. The reason for this is that the explanation fails to do justice to the essentially three-dimensional structure of the bee's honeycomb.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Can Indispensability‐Driven Platonists Be (Serious) Presentists?Sam Baron - 2013 - Theoria 79 (3):153-173.
    In this article I consider what it would take to combine a certain kind of mathematical Platonism with serious presentism. I argue that a Platonist moved to accept the existence of mathematical objects on the basis of an indispensability argument faces a significant challenge if she wishes to accept presentism. This is because, on the one hand, the indispensability argument can be reformulated as a new argument for the existence of past entities and, on the other hand, if one accepts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and Program Explanations.Juha Saatsi - 2012 - Australasian Journal of Philosophy 90 (3):579-584.
    Aidan Lyon has recently argued that some mathematical explanations of empirical facts can be understood as program explanations. I present three objections to his argument.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Philosophy of Mathematics: A Study of Indispensability and Inconsistency.Hannah C. Thornhill - unknown
    This thesis examines possible philosophies to account for the practice of mathematics, exploring the metaphysical, ontological, and epistemological outcomes of each possible theory. Through a study of the two most probable ideas, mathematical platonism and fictionalism, I focus on the compelling argument for platonism given by an appeal to the sciences. The Indispensability Argument establishes the power of explanation seen in the relationship between mathematics and empirical science. Cases of this explanatory power illustrate how we might have reason to believe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • There Are No Mathematical Explanations.Jaakko Kuorikoski - 2021 - Philosophy of Science 88 (2):189-212.
    If ontic dependence is the basis of explanation, there cannot be mathematical explanations. Accounting for the explanatory dependency between mathematical properties and empirical phenomena poses i...
    Download  
     
    Export citation  
     
    Bookmark   7 citations