Switch to: References

Add citations

You must login to add citations.
  1. How to Teach General Relativity.Guy Hetzroni & James Read - forthcoming - British Journal for the Philosophy of Science.
    Supposing that one is already familiar with special relativistic physics, what constitutes the best route via which to arrive at the architecture of the general theory of relativity? Although the later Einstein would stress the significance of mathematical and theoretical principles in answering this question, in this article we follow the lead of the earlier Einstein (circa 1916) and stress instead how one can go a long way to arriving at the general theory via inductive and empirical principles, without invoking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Causation and the conservation of energy in general relativity.Sebastián Murgueitio Ramírez, James Read & Andres Paez - forthcoming - The British Journal for the Philosophy of Science.
    Consensus in the contemporary philosophical literature has it that conserved quantity theories of causation such as that of Dowe [2000]—according to which causation is to be analysed in terms of the exchange of conserved quantities (e.g., energy)—face damning problems when confronted with contemporary physics, where the notion of conservation becomes delicate. In particular, in general relativity it is often claimed that there simply are no conservation laws for (say) total-stress energy. If this claim is correct, it is difficult to see (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The dynamical approach to spin-2 gravity.Kian Salimkhani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:29-45.
    This paper engages with the following closely related questions that have recently received some attention in the literature: what is the status of the equivalence principle in general relativity?; how does the metric field obtain its property of being able to act as a metric?; and is the metric of GR derivative on the dynamics of the matter fields? The paper attempts to complement these debates by studying the spin-2 approach to gravity. In particular, the paper argues that three lessons (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Background Independence: Lessons for Further Decades of Dispute.Trevor Teitel - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65:41-54.
    Background independence begins life as an informal property that a physical theory might have, often glossed as 'doesn't posit a fixed spacetime background'. Interest in trying to offer a precise account of background independence has been sparked by the pronouncements of several theorists working on quantum gravity that background independence embodies in some sense an essential discovery of the General Theory of Relativity, and a feature we should strive to carry forward to future physical theories. This paper has two goals. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Defining a crisis: the roles of principles in the search for a theory of quantum gravity.Karen Crowther - 2021 - Synthese 198 (Suppl 14):3489-3516.
    In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required—physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of the crisis, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Physical Geometry.James P. Binkoski - 2016 - Dissertation, University of Massachusetts, Amherst
    All physical theories, from classical Newtonian mechanics to relativistic quantum field theory, entail propositions concerning the geometric structure of spacetime. To give an example, the general theory of relativity entails that spacetime is curved, smooth, and four-dimensional. In this dissertation, I take the structural commitments of our theories seriously and ask: how is such structure instantiated in the physical world? Mathematically, a property like 'being curved' is perfectly well-defined insofar as we know what it means for a mathematical space to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Laplace’s demon tries on Aristotle’s cloak: on two approaches to determinism.Tomasz Placek - 2019 - Synthese 196 (1):11-30.
    The paper describes two approaches to determinism: one focuses on the features of global objects, such as possible worlds or models of a theory, whereas the other’s concern is the possible behaviour of individual objects. It then gives an outline of an individuals-based analysis of the determinism of theories. Finally, a general relativistic spacetime with non-isometric extensions is described and used to illustrate a conflict between the two approaches: this spacetime is indeterministic by the first approach but deterministic by the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Proposal for a Bohmian Ontology of Quantum Gravity.Antonio Vassallo & Michael Esfeld - 2013 - Foundations of Physics (1):1-18.
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show how a non-local law in which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On Identifying Background-Structure in Classical Field Theories.Ryan Samaroo - 2011 - Philosophy of Science 78 (5):1070-1081.
    I examine a property of theories called "background-independence" that Einsteinian gravitation is thought to exemplify. This concept has figured in the work of Rovelli (2001, 2004), Smolin (2006), Giulini (2007), and Belot (2011), among others. I propose and evaluate a few candidates for background-independence, and I show that there is something chimaerical about the concept. I argue, however, that there is a proposal that clarifies the feature of Einsteinian gravitation that motivates the concept.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Metaphysical Challenge of Loop Quantum Gravity.Martin Calamari - 2021 - Studies in History and Philosophy of Science Part A 86 (C):68-83.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fifty Million Elvis Fans Can’t be Wrong.Gordon Belot - 2018 - Noûs:946-981.
    This essay revisits some classic problems in the philosophy of space and time concerning the counting of possibilities. I argue that we should think that two Newtonian worlds can differ only as to when or where things happen and that general relativistic worlds can differ in something like the same way—the first of these theses being quaintly heterodox, the second baldly heretical, according to the mores of contemporary philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • A Metaphysical Reflection on the Notion of Background in Modern Spacetime Physics.Antonio Vassallo - 2016 - In Laura Felline (ed.), New Developments in Logic and Philosophy of Science. pp. 349-365.
    The paper presents a metaphysical characterization of spatiotemporal backgrounds from a realist perspective. The conceptual analysis is based on a heuristic sketch that encompasses the common formal traits of the major spacetime theories, such as Newtonian mechanics and general relativity. It is shown how this framework can be interpreted in a fully realist fashion, and what is the role of background structures in such a picture. In the end it is argued that, although backgrounds are a source of metaphysical discomfort, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dualities and emergent gravity: Gauge/gravity duality.Sebastian de Haro - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59:109-125.
    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence. I apply this (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Isolated systems and their symmetries, part I: General framework and particle-mechanics examples.David Wallace - 2022 - Studies in History and Philosophy of Science Part A 92 (C):239-248.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of emergence to be inappropriate, I develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • General Covariance, Diffeomorphism Invariance, and Background Independence in 5 Dimensions.Antonio Vassallo - 2015 - In Tomasz Bigaj & Christian Wüthrich (eds.), Metaphysics in Contemporary Physics. Boston: Brill | Rodopi.
    The paper considers the "GR-desideratum", that is, the way general relativity implements general covariance, diffeomorphism invariance, and background independence. Two cases are discussed where 5-dimensional generalizations of general relativity run into interpretational troubles when the GR-desideratum is forced upon them. It is shown how the conceptual problems dissolve when such a desideratum is relaxed. In the end, it is suggested that a similar strategy might mitigate some major issues such as the problem of time or the embedding of quantum non-locality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual Aspects of Gauge/Gravity Duality.Sebastian De Haro, Daniel R. Mayerson & Jeremy N. Butterfield - 2016 - Foundations of Physics 46 (11):1381-1425.
    We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Sect. 5, the central and original example: Maldacena’s AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Quantum gravity and the nature of space and time.Keizo Matsubara - 2017 - Philosophy Compass 12 (3):e12405.
    This is a nontechnical overview of how various approaches to quantum gravity suggest modifications to the way we conceptualize space and time. A theory of quantum gravity is needed to reconcile quantum physics with general relativity, our best theory for gravity. The most popular approaches to quantum gravity are string theory and loop quantum gravity. So far, no approach has been empirically successful, and there is no commonly accepted theory. Thus, the conclusions presented here are tentative. Many approaches suggest that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Can Bohmian mechanics be made background independent?Antonio Vassallo - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):242-250.
    The paper presents an inquiry into the question regarding the compatibility of Bohmian mechanics, intended as a non-local theory of moving point-like particles, with background independence. This issue is worth being investigated because, if the Bohmian framework has to be of some help in developing new physics, it has to be compatible with the most well-established traits of modern physics, background independence being one of such traits. The paper highlights the fact that the notion of background independence in the context (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum gravity.Steven Weinstein - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On Time in Quantum Physics.Jeremy Butterfield - 2013 - In Adrian Bardon & Heather Dyke (eds.), A Companion to the Philosophy of Time. Malden, MA: Wiley-Blackwell. pp. 220–241.
    Time, along with concepts as space and matter, is bound to be a central concept of any physical theory. The chapter first discusses how time is treated similarly in quantum and classical theories. It then provides a few references on time‐reversal. The chapter discusses three chosen authors' (Paul Busch, Jan Hilgevoord and Jos Uffink) clarifications of uncertainty principles in general. Next, the chapter follows Busch in distinguishing three roles for time in quantum physics. They are external time, intrinsic time and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dark matter = modified gravity? Scrutinising the spacetime–matter distinction through the modified gravity/ dark matter lens.Niels C. M. Martens & Dennis Lehmkuhl - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:237-250.
    This paper scrutinises the tenability of a strict conceptual distinction between space and matter via the lens of the debate between modified gravity and dark matter. In particular, we consider Berezhiani and Khoury's novel 'superfluid dark matter theory' as a case study. Two families of criteria for being matter and being spacetime, respectively, are extracted from the literature. Evaluation of the new scalar field postulated by SFDM according to these criteria reveals that it is as much matter as anything could (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Cartography of the space of theories: An interpretational chart for fields that are both (dark) matter and spacetime.Niels C. M. Martens & Dennis Lehmkuhl - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:217-236.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Einstein׳s Equations for Spin 2 Mass 0 from Noether׳s Converse Hilbertian Assertion.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:60-69.
    An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a "curl" term with identically zero divergence. Noether proved a \emph{converse} "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom for stability, along (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Spacetime: function and approximation.Sam Baron - 2022 - Synthese 200 (2).
    Several approaches to quantum gravity signal the loss of spacetime at some level. According to spacetime functionalism, spacetime is functionally realised by a more fundamental structure. According to one version of spacetime functionalism, the spacetime role is specified by Ramsifying general relativity. In some approaches to QG, however, there does not appear to be anything that exactly realises the functional role defined by a Ramsey sentence for GR. The spacetime role is approximately realised. It is open to the spacetime functionalist (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations