Switch to: References

Citations of:

Infinitary logic

Stanford Encyclopedia of Philosophy (2008)

Add citations

You must login to add citations.
  1. SAD computers and two versions of the Church–Turing thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that the Effective version (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Alfred Tarski and the "Concept of Truth in Formalized Languages": A Running Commentary with Consideration of the Polish Original and the German Translation.Monika Gruber - 2016 - Cham, Switzerland: Springer Verlag.
    This book provides a detailed commentary on the classic monograph by Alfred Tarski, and offers a reinterpretation and retranslation of the work using the original Polish text and the English and German translations. In the original work, Tarski presents a method for constructing definitions of truth for classical, quantificational formal languages. Furthermore, using the defined notion of truth, he demonstrates that it is possible to provide intuitively adequate definitions of the semantic notions of definability and denotation and that the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Grounding, Quantifiers, and Paradoxes.Francesco A. Genco, Francesca Poggiolesi & Lorenzo Rossi - 2021 - Journal of Philosophical Logic 50 (6):1417-1448.
    The notion of grounding is usually conceived as an objective and explanatory relation. It connects two relata if one—the ground—determines or explains the other—the consequence. In the contemporary literature on grounding, much effort has been devoted to logically characterize the formal aspects of grounding, but a major hard problem remains: defining suitable grounding principles for universal and existential formulae. Indeed, several grounding principles for quantified formulae have been proposed, but all of them are exposed to paradoxes in some very natural (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Argument for the Ontological Innocence of Mereology.Rohan French - 2016 - Erkenntnis 81 (4):683-704.
    In Parts of Classes David Lewis argued that mereology is ‘ontologically innocent’, mereological notions not incurring additional ontological commitments. Unfortunately, though, Lewis’s argument for this is not fully spelled out. Here we use some formal results concerning translations between formal languages to argue for the ontological innocence of mereology directly.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dependencia e indeterminación en la lógica de segundo orden.Lucas Rosenblatt - 2011 - Cuadernos de Filosofía 57:31-50.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Continuum-Valued Logic of Degrees of Probability.Colin Howson - 2014 - Erkenntnis 79 (5):1001-1013.
    Leibniz seems to have been the first to suggest a logical interpretation of probability, but there have always seemed formidable mathematical and interpretational barriers to implementing the idea. De Finetti revived it only, it seemed, to reject it in favour of a purely decision-theoretic approach. In this paper I argue that not only is it possible to view (Bayesian) probability as a continuum-valued logic, but that it has a very close formal kinship with classical propositional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark