Switch to: References

Citations of:

Axiomatic Set Theory

Journal of Symbolic Logic 24 (3):224-225 (1959)

Add citations

You must login to add citations.
  1. (1 other version)The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition).Bhupinder Singh Anand - 2024 - Mumbai: DBA Publishing (Second Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Labyrinth of Continua.Patrick Reeder - 2018 - Philosophia Mathematica 26 (1):1-39.
    This is a survey of the concept of continuity. Efforts to explicate continuity have produced a plurality of philosophical conceptions of continuity that have provably distinct expressions within contemporary mathematics. I claim that there is a divide between the conceptions that treat the whole continuum as prior to its parts, and those conceptions that treat the parts of the continuum as prior to the whole. Along this divide, a tension emerges between those conceptions that favor philosophical idealizations of continuity and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Set‐Theories as Algebras.Paul Fjelstad - 1968 - Mathematical Logic Quarterly 14 (25-29):383-411.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bibliography Patrick Suppes.Maria Sojka - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 47 (1):11-35.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the syntax of logic and set theory.Lucius T. Schoenbaum - 2010 - Review of Symbolic Logic 3 (4):568-599.
    We introduce an extension of the propositional calculus to include abstracts of predicates and quantifiers, employing a single rule along with a novel comprehension schema and a principle of extensionality, which are substituted for the Bernays postulates for quantifiers and the comprehension schemata of ZF and other set theories. We prove that it is consistent in any finite Boolean subset lattice. We investigate the antinomies of Russell, Cantor, Burali-Forti, and others, and discuss the relationship of the system to other set-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In praise of replacement.Akihiro Kanamori - 2012 - Bulletin of Symbolic Logic 18 (1):46-90.
    This article serves to present a large mathematical perspective and historical basis for the Axiom of Replacement as well as to affirm its importance as a central axiom of modern set theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Causal Slingshots.Michael Baumgartner - 2010 - Erkenntnis 72 (1):111-133.
    Causal slingshots are formal arguments advanced by proponents of an event ontology of token-level causation which, in the end, are intended to show two things: (i) The logical form of statements expressing causal dependencies on token level features a binary predicate ‘‘... causes ...’’ and (ii) that predicate takes events as arguments. Even though formalisms are only revealing with respect to the logical form of natural language statements, if the latter are shown to be adequately captured within a corresponding formalism, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Descriptions in Mathematical Logic.Gerard R. Renardel - 1984 - Studia Logica 43 (3):281-294.
    After a discussion of the different treatments in the literature of vacuous descriptions, the notion of descriptor is slightly generalized to function descriptor Ⅎ $\overset \rightarrow \to{y}$, so as to form partial functions φ = Ⅎ $y.A$ which satisfy $\forall \overset \rightarrow \to{x}z\leftrightarrow y=z))$. We use logic with existence predicate, as introduced by D. S. Scott, to handle partial functions, and prove that adding function descriptors to a theory based on such a logic is conservative. For theories with quantification over (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s Induction-Axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Are the Barriers that Inhibit Mathematical Models of a Cyclic Universe, which Admits Broken Symmetries, Dark Energy, and an Expanding Multiverse, Illusory?Bhupinder Singh Anand - manuscript
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has not been reflected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel's "slingshot" argument and his onto-theological system.Srećko Kovač & Kordula Świętorzecka - 2015 - In Kordula Świętorzecka (ed.), Gödel's Ontological Argument: History, Modifications, and Controversies. Semper. pp. 123-162.
    The paper shows that it is possible to obtain a "slingshot" result in Gödel's theory of positiveness in the presence of the theorem of the necessary existence of God. In the context of the reconstruction of Gödel's original "slingshot" argument on the suppositions of non-Fregean logic, this is a natural result. The "slingshot" result occurs in sufficiently strong non-Fregean theories accepting the necessary existence of some entities. However, this feature of a Gödelian theory may be considered not as a trivialisation, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Some Observations on the Axiom of Choice.Arthur H. Kruse - 1962 - Mathematical Logic Quarterly 8 (2):125-146.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Constructive Methods of Numeration.Arthur H. Kruse - 1962 - Mathematical Logic Quarterly 8 (1):57-70.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Reassessment of Cantorian Abstraction based on the $$\varepsilon $$ ε -operator.Nicola Bonatti - 2022 - Synthese 200 (5):1-26.
    Cantor’s abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor’s proposal based upon the set theoretic framework of Bourbaki—called BK—which is a First-order set theory extended with Hilbert’s \-operator. Moreover, it is argued that the BK system and the \-operator provide a faithful reconstruction of Cantor’s insights on cardinal numbers. I will introduce first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shallow Analysis and the Slingshot Argument.Michael Baumgartner - 2010 - Journal of Philosophical Logic 39 (5):531-556.
    According to the standard opinions in the literature, blocking the unacceptable consequences of the notorious slingshot argument requires imposing constraints on the metaphysics of facts or on theories of definite descriptions (or class abstracts). This paper argues that both of these well-known strategies to rebut the slingshot overshoot the mark. The slingshot, first and foremost, raises the question as to the adequate logical formalization of statements about facts, i.e. of factual contexts. It will be shown that a rigorous application of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophy, mathematics, science and computation.Enrique V. Kortright - 1994 - Topoi 13 (1):51-60.
    Attempts to lay a foundation for the sciences based on modern mathematics are questioned. In particular, it is not clear that computer science should be based on set-theoretic mathematics. Set-theoretic mathematics has difficulties with its own foundations, making it reasonable to explore alternative foundations for the sciences. The role of computation within an alternative framework may prove to be of great potential in establishing a direction for the new field of computer science.Whitehead''s theory of reality is re-examined as a foundation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bernays and set theory.Akihiro Kanamori - 2009 - Bulletin of Symbolic Logic 15 (1):43-69.
    We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higher-order reflection principles.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Short definitions of the ordinals.Kenneth R. Brown & Hao Wang - 1966 - Journal of Symbolic Logic 31 (3):409-414.
    Download  
     
    Export citation  
     
    Bookmark