Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Completeness and categoricty, part II: 20th century metalogic to 21st century semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):77-92.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Models and modality.Patricia A. Blanchette - 2000 - Synthese 124 (1-2):45-72.
    This paper examines the connection between model-theoretic truth and necessary truth. It is argued that though the model-theoretic truths of some standard languages are demonstrably ''''necessary'''' (in a precise sense), the widespread view of model-theoretic truth as providing a general guarantee of necessity is mistaken. Several arguments to the contrary are criticized.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Tarski on models.Timothy Bays - 2001 - Journal of Symbolic Logic 66 (4):1701-1726.
    This paper concerns Tarski’s use of the term “model” in his 1936 paper “On the Concept of Logical Consequence.” Against several of Tarski’s recent defenders, I argue that Tarski employed a non-standard conception of models in that paper. Against Tarski’s detractors, I argue that this non-standard conception is more philosophically plausible than it may appear. Finally, I make a few comments concerning the traditionally puzzling case of Tarski’s ω-rule example.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Frege–Hilbert controversy in context.Tabea Rohr - 2023 - Synthese 202 (1):1-30.
    This paper aims to show that Frege’s and Hilbert’s mutual disagreement results from different notions of Anschauung and their relation to axioms. In the first section of the paper, evidence is provided to support that Frege and Hilbert were influenced by the same developments of 19th-century geometry, in particular the work of Gauss, Plücker, and von Staudt. The second section of the paper shows that Frege and Hilbert take different approaches to deal with the problems that the developments in 19th-century (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege and the origins of model theory in nineteenth century geometry.Günther Eder - 2019 - Synthese 198 (6):5547-5575.
    The aim of this article is to contribute to a better understanding of Frege’s views on semantics and metatheory by looking at his take on several themes in nineteenth century geometry that were significant for the development of modern model-theoretic semantics. I will focus on three issues in which a central semantic idea, the idea of reinterpreting non-logical terms, gradually came to play a substantial role: the introduction of elements at infinity in projective geometry; the study of transfer principles, especially (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. New York: Birkhäuser. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege’s philosophy of geometry.Matthias Schirn - 2019 - Synthese 196 (3):929-971.
    In this paper, I critically discuss Frege’s philosophy of geometry with special emphasis on his position in The Foundations of Arithmetic of 1884. In Sect. 2, I argue that that what Frege calls faculty of intuition in his dissertation is probably meant to refer to a capacity of visualizing geometrical configurations structurally in a way which is essentially the same for most Western educated human beings. I further suggest that according to his Habilitationsschrift it is through spatial intuition that we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why Is a Valid Inference a Good Inference?Sinan Dogramaci - 2015 - Philosophy and Phenomenological Research 94 (1):61-96.
    True beliefs and truth-preserving inferences are, in some sense, good beliefs and good inferences. When an inference is valid though, it is not merely truth-preserving, but truth-preserving in all cases. This motivates my question: I consider a Modus Ponens inference, and I ask what its validity in particular contributes to the explanation of why the inference is, in any sense, a good inference. I consider the question under three different definitions of ‘case’, and hence of ‘validity’: the orthodox definition given (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Model theory.Wilfrid Hodges - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • Hilbert on Consistency as a Guide to Mathematical Reality.Fiona T. Doherty - 2017 - Logique Et Analyse 237:107-128.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The place of probability in Hilbert’s axiomatization of physics, ca. 1900–1928.Lukas M. Verburgt - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:28-44.
    Although it has become a common place to refer to the ׳sixth problem׳ of Hilbert׳s (1900) Paris lecture as the starting point for modern axiomatized probability theory, his own views on probability have received comparatively little explicit attention. The central aim of this paper is to provide a detailed account of this topic in light of the central observation that the development of Hilbert׳s project of the axiomatization of physics went hand-in-hand with a redefinition of the status of probability theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege on definitions.Sanford Shieh - 2008 - Philosophy Compass 3 (5):992-1012.
    This article treats three aspects of Frege's discussions of definitions. First, I survey Frege's main criticisms of definitions in mathematics. Second, I consider Frege's apparent change of mind on the legitimacy of contextual definitions and its significance for recent neo-Fregean logicism. In the remainder of the article I discuss a critical question about the definitions on which Frege's proofs of the laws of arithmetic depend: do the logical structures of the definientia reflect the understanding of arithmetical terms prevailing prior to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Critical Remarks on Frege’s Conception of Logic by Patricia Blanchette. [REVIEW]Kai F. Wehmeier - 2015 - Journal for the History of Analytical Philosophy 3 (7).
    All contributions included in the present issue were originally presented at an ‘Author Meets Critics’ session organised by Richard Zach at the Pacific Meeting of the American Philosophical Association in San Diego in the Spring of 2014.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identity and the Cognitive Value of Logical Equations in Frege’s Foundational Project.Matthias Schirn - 2023 - Notre Dame Journal of Formal Logic 64 (4):495-544.
    In this article, I first analyze and assess the epistemological and semantic status of canonical value-range equations in the formal language of Frege’s Grundgesetze der Arithmetik. I subsequently scrutinize the relation between (a) his informal, metalinguistic stipulation in Grundgesetze I, Section 3, and (b) its formal counterpart, which is Basic Law V. One point I argue for is that the stipulation in Section 3 was designed not only to fix the references of value-range names, but that it was probably also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Open Texture and Mathematics.Stewart Shapiro & Craige Roberts - 2021 - Notre Dame Journal of Formal Logic 62 (1):173-191.
    The purpose of this article is to explore the extent to which mathematics is subject to open texture and the extent to which mathematics resists open texture. The resistance is tied to the importance of proof and, in particular, rigor, in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a reconstruction of this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Frege on Axioms, Indirect Proof, and Independence Arguments in Geometry: Did Frege Reject Independence Arguments?Jamie Tappenden - 2000 - Notre Dame Journal of Formal Logic 41 (3):271-315.
    It is widely believed that some puzzling and provocative remarks that Frege makes in his late writings indicate he rejected independence arguments in geometry, particularly arguments for the independence of the parallels axiom. I show that this is mistaken: Frege distinguished two approaches to independence arguments and his puzzling remarks apply only to one of them. Not only did Frege not reject independence arguments across the board, but also he had an interesting positive proposal about the logical structure of correct (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Frege on intuition and objecthood in projective geometry.Günther Eder - 2021 - Synthese 199 (3-4):6523-6561.
    In recent years, several scholars have been investigating Frege’s mathematical background, especially in geometry, in order to put his general views on mathematics and logic into proper perspective. In this article I want to continue this line of research and study Frege’s views on geometry in their own right by focussing on his views on a field which occupied center stage in nineteenth century geometry, namely, projective geometry.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Breadth of the Paradox.Patricia Blanchette - 2016 - Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How many thoughts can fit in the form of a proposition?Susan Sterrett - unknown
    I argue here that Frege’s eventual view on the relation between sentences and the thoughts they express is that, ideally, a sentence expresses exactly one thought, and a thought is expressed by exactly one (canonical) sentence. This may clash with some mainstream views of Frege, for it has the consequence of de-emphasizing the philosophical significance of the question of how it is possible for someone to regard one sentence as true yet regard another sentence that expresses the same thought as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frank Ramsey and the Realistic Spirit.Steven Methven - 2014 - London and Basingstoke: Palgrave Macmillan.
    This book attempts to explicate and expand upon Frank Ramsey's notion of the realistic spirit. In so doing, it provides a systematic reading of his work, and demonstrates the extent of Ramsey's genius as evinced by both his responses to the Tractatus Logico-Philosophicus , and the impact he had on Wittgenstein's later philosophical insights.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Independence of the Parallel Postulate and Development of Rigorous Consistency Proofs.David J. Stump - 2007 - History and Philosophy of Logic 28 (1):19-30.
    I trace the development of arguments for the consistency of non-Euclidean geometries and for the independence of the parallel postulate, showing how the arguments become more rigorous as a formal conception of geometry is introduced. I analyze the kinds of arguments offered by Jules Hoüel in 1860-1870 for the unprovability of the parallel postulate and for the existence of non-Euclidean geometries, especially his reaction to the publication of Beltrami’s seminal papers, showing that Beltrami was much more concerned with the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Remarks on Independence Proofs and Indirect Reference.Günther Eder - 2013 - History and Philosophy of Logic 34 (1):68-78.
    In the last two decades, there has been increasing interest in a re-evaluation of Frege’s stance towards consistency- and independence proofs. Papers by several authors deal with Frege’s views on these topics. In this note, I want to discuss one particular problem, which seems to be a main reason for Frege’s reluctant attitude towards his own proposed method of proving the independence of axioms, namely his view that thoughts, that is, intensional entities are the objects of metatheoretical investigations. This stands (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Formal Explication of Blanchette's Conception of Fregean Consequence.Günther Eder - 2023 - History and Philosophy of Logic 44 (3):287-310.
    Over the past decades, Patricia Blanchette has developed a sophisticated account of Frege's conception of logic and his views on logical consequence. One of the central components of her interpretation is the idea that Frege's conception of logical consequence is ‘semantically laden’ and not purely formal. The aim of the present paper is to provide precise explications of this as well as related ideas that inform her account, and to discuss their significance for the philosophy of logic in general and (...)
    Download  
     
    Export citation  
     
    Bookmark