Switch to: References

Citations of:

Model theory

Stanford Encyclopedia of Philosophy (2008)

Add citations

You must login to add citations.
  1. On the indispensability of theoretical terms and entities.Eric Johannesson - 2022 - Synthese 200 (2):1-25.
    Some realists claim that theoretical entities like numbers and electrons are indispensable for describing the empirical world. Motivated by the meta-ontology of Quine, I take this claim to imply that, for some first-order theory T and formula δ(x) such that T ⊢ ∃xδ ∧ ∃x¬δ, where δ(x) is intended to apply to all and only empirical entities, there is no first-order theory T′ such that (a) T and T′ describe the δ:s in the same way, (b) T′ ⊢ ∀xδ, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Subject Matter of Logic: Explaining what logic is about.Elizabeth Olsen - 2021 - Dissertation, Victoria University of Wellington
    Logicians disagree about how validity—the very heart of logic—should be understood. Many different formal systems have been born due to this disagreement. This thesis examines how teachers explain the subject matter of logic to students in introductory logic textbooks, and demonstrates the different explanations teachers use. These differences help explain why logicians have different intuitions about validity.
    Download  
     
    Export citation  
     
    Bookmark  
  • Model theory of monadic predicate logic with the infinity quantifier.Facundo Carreiro, Alessandro Facchini, Yde Venema & Fabio Zanasi - 2022 - Archive for Mathematical Logic 61 (3):465-502.
    This paper establishes model-theoretic properties of \, a variation of monadic first-order logic that features the generalised quantifier \. We will also prove analogous versions of these results in the simpler setting of monadic first-order logic with and without equality and \, respectively). For each logic \ we will show the following. We provide syntactically defined fragments of \ characterising four different semantic properties of \-sentences: being monotone and continuous in a given set of monadic predicates; having truth preserved under (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hanf numbers for extendibility and related phenomena.John T. Baldwin & Saharon Shelah - 2022 - Archive for Mathematical Logic 61 (3):437-464.
    This paper contains portions of Baldwin’s talk at the Set Theory and Model Theory Conference and a detailed proof that in a suitable extension of ZFC, there is a complete sentence of \ that has maximal models in cardinals cofinal in the first measurable cardinal and, of course, never again.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Domain Extension and Ideal Elements in Mathematics†.Anna Bellomo - 2021 - Philosophia Mathematica 29 (3):366-391.
    Domain extension in mathematics occurs whenever a given mathematical domain is augmented so as to include new elements. Manders argues that the advantages of important cases of domain extension are captured by the model-theoretic notions of existential closure and model completion. In the specific case of domain extension via ideal elements, I argue, Manders’s proposed explanation does not suffice. I then develop and formalize a different approach to domain extension based on Dedekind’s Habilitationsrede, to which Manders’s account is compared. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such debate, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Bolzano’s Mathematical Infinite.Anna Bellomo & Guillaume Massas - 2021 - Review of Symbolic Logic:1-55.
    Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be equipped (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mutual translatability, equivalence, and the structure of theories.Thomas William Barrett & Hans Halvorson - 2022 - Synthese 200 (3):1-36.
    This paper presents a simple pair of first-order theories that are not definitionally (nor Morita) equivalent, yet are mutually conservatively translatable and mutually 'surjectively' translatable. We use these results to clarify the overall geography of standards of equivalence and to show that the structural commitments that theories make behave in a more subtle manner than has been recognized.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalizing Empirical Adequacy II: Partial Structures.Sebastian Lutz - 2021 - Synthese 198 (2):1351-1380.
    I show that extant attempts to capture and generalize empirical adequacy in terms of partial structures fail. Indeed, the motivations for the generalizations in the partial structures approach are better met by the generalizations via approximation sets developed in “Generalizing Empirical Adequacy I”. Approximation sets also generalize partial structures.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Infinitary propositional relevant languages with absurdity.Guillermo Badia - 2017 - Review of Symbolic Logic 10 (4):663-681.
    Analogues of Scott's isomorphism theorem, Karp's theorem as well as results on lack of compactness and strong completeness are established for infinitary propositional relevant logics. An "interpolation theorem" for the infinitary quantificational boolean logic L-infinity omega. holds. This yields a preservation result characterizing the expressive power of infinitary relevant languages with absurdity using the model-theoretic relation of relevant directed bisimulation as well as a Beth definability property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Armchair Philosophy Naturalized.Sebastian Lutz - 2020 - Synthese 197 (3):1099-1125.
    Carnap suggests that philosophy can be construed as being engaged solely in conceptual engineering. I argue that since many results of the sciences can be construed as stemming from conceptual engineering as well, Carnap’s account of philosophy can be methodologically naturalistic. This is also how he conceived of his account. That the sciences can be construed as relying heavily on conceptual engineering is supported by empirical investigations into scientific methodology, but also by a number of conceptual considerations. I present a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Cham, Switzerland: Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Haecceities and Mathematical Structuralism.Christopher Menzel - 2018 - Philosophia Mathematica 26 (1):84-111.
    Recent work in the philosophy of mathematics has suggested that mathematical structuralism is not committed to a strong form of the Identity of Indiscernibles (II). José Bermúdez demurs, and argues that a strong form of II can be warranted on structuralist grounds by countenancing identity properties, or haecceities, as legitimately structural. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as structural but that this concession does not warrant Bermúdez’s version (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Ontology of Digital Physics.Anderson Beraldo-de-Araújo & Lorenzo Baravalle - 2017 - Erkenntnis 82 (6):1211-1231.
    Digital physics claims that the entire universe is, at the very bottom, made out of bits; as a result, all physical processes are intrinsically computational. For that reason, many digital physicists go further and affirm that the universe is indeed a giant computer. The aim of this article is to make explicit the ontological assumptions underlying such a view. Our main concern is to clarify what kind of properties the universe must instantiate in order to perform computations. We analyse the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quine’s conjecture on many-sorted logic.Thomas William Barrett & Hans Halvorson - 2017 - Synthese 194 (9):3563-3582.
    Quine often argued for a simple, untyped system of logic rather than the typed systems that were championed by Russell and Carnap, among others. He claimed that nothing important would be lost by eliminating sorts, and the result would be additional simplicity and elegance. In support of this claim, Quine conjectured that every many-sorted theory is equivalent to a single-sorted theory. We make this conjecture precise, and prove that it is true, at least according to one reasonable notion of theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Deflating skolem.F. A. Muller - 2005 - Synthese 143 (3):223-253.
    . Remarkably, despite the tremendous success of axiomatic set-theory in mathematics, logic and meta-mathematics, e.g., model-theory, two philosophical worries about axiomatic set-theory as the adequate catch of the set-concept keep haunting it. Having dealt with one worry in a previous paper in this journal, we now fulfil a promise made there, namely to deal with the second worry. The second worry is the Skolem Paradox and its ensuing Skolemite skepticism. We present a comparatively novel and simple analysis of the argument (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structural-Abstraction Principles.Graham Leach-Krouse - 2015 - Philosophia Mathematica:nkv033.
    In this paper, I present a class of ‘structural’ abstraction principles, and describe how they are suggested by some features of Cantor's and Dedekind's approach to abstraction. Structural abstraction is a promising source of mathematically tractable new axioms for the neo-logicist. I illustrate this by showing, first, how a theorem of Shelah gives a sufficient condition for consistency in the structural setting, solving what neo-logicists call the ‘bad company’ problem for structural abstraction. Second, I show how, in the structural setting, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Was the Syntax‐Semantics Debate in the Philosophy of Science About?Sebastian Lutz - 2017 - Philosophy and Phenomenological Research 95 (2):319-352.
    The debate between critics of syntactic and semantic approaches to the formalization of scientific theories has been going on for over 50 years. I structure the debate in light of a recent exchange between Hans Halvorson, Clark Glymour, and Bas van Fraassen and argue that the only remaining disagreement concerns the alleged difference in the dependence of syntactic and semantic approaches on languages of predicate logic. This difference turns out to be illusory.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Carnap on Empirical Significance.Sebastian Lutz - 2017 - Synthese 194 (1):217-252.
    Carnap’s search for a criterion of empirical significance is usually considered a failure. I argue that the results from two out of his three different approaches are at the very least problematic, but that one approach led to success. Carnap’s criterion of translatability into logical syntax is too vague to allow for definite results. His criteria for terms—introducibility by chains of reduction sentences and his criterion from “The Methodological Character of Theoretical Concepts”—are almost trivial and have no clear relation to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maps, languages, and manguages: Rival cognitive architectures?Kent Johnson - 2015 - Philosophical Psychology 28 (6):815-836.
    Provided we agree about the thing, it is needless to dispute about the terms. —David Hume, A treatise of human nature, Book 1, section VIIMap-like representations are frequently invoked as an alternative type of representational vehicle to a language of thought. This view presupposes that map-systems and languages form legitimate natural kinds of cognitive representational systems. I argue that they do not, because the collections of features that might be taken as characteristic of maps or languages do not themselves provide (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Relation algebras from cylindric algebras, I.Robin Hirsch & Ian Hodkinson - 2001 - Annals of Pure and Applied Logic 112 (2-3):225-266.
    We characterise the class S Ra CA n of subalgebras of relation algebra reducts of n -dimensional cylindric algebras by the notion of a ‘hyperbasis’, analogous to the cylindric basis of Maddux, and by representations. We outline a game–theoretic approximation to the existence of a representation, and how to use it to obtain a recursive axiomatisation of S Ra CA n.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Complexity of monodic guarded fragments over linear and real time.Ian Hodkinson - 2006 - Annals of Pure and Applied Logic 138 (1):94-125.
    We show that the satisfiability problem for the monodic guarded, loosely guarded, and packed fragments of first-order temporal logic with equality is 2Exptime-complete for structures with arbitrary first-order domains, over linear time, dense linear time, rational number time, and some other classes of linear flows of time. We then show that for structures with finite first-order domains, these fragments are also 2Exptime-complete over real number time and hence over most of the commonly used linear flows of time, including the natural (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalising canonical extension to the categorical setting.Dion Coumans - 2012 - Annals of Pure and Applied Logic 163 (12):1940-1961.
    Canonical extension has proven to be a powerful tool in algebraic study of propositional logics. In this paper we describe a generalisation of the theory of canonical extension to the setting of first order logic. We define a notion of canonical extension for coherent categories. These are the categorical analogues of distributive lattices and they provide categorical semantics for coherent logic, the fragment of first order logic in the connectives ∧, ∨, 0, 1 and ∃. We describe a universal property (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Twin Paradox and the Logical Foundation of Relativity Theory.Judit X. Madarász, István Németi & Gergely Székely - 2006 - Foundations of Physics 36 (5):681-714.
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Modular first-order ontologies via repositories.Michael Grüninger, Torsten Hahmann, Ali Hashemi, Darren Ong & Atalay Ozgovde - 2012 - Applied ontology 7 (2):169-209.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Semantic View, If Plausible, Is Syntactic.Hans Halvorson - 2013 - Philosophy of Science 80 (3):475-478.
    Halvorson argues that the semantic view of theories leads to absurdities. Glymour shows how to inoculate the semantic view against Halvorson's criticisms, namely by making it into a syntactic view of theories. I argue that this modified semantic-syntactic view cannot do the philosophical work that the original "language-free" semantic view was supposed to do.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Why It Is Time To Move Beyond Nagelian Reduction.Marie I. Kaiser - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer. pp. 255-272.
    In this paper I argue that it is finally time to move beyond the Nagelian framework and to break new ground in thinking about epistemic reduction in biology. I will do so, not by simply repeating all the old objections that have been raised against Ernest Nagel’s classical model of theory reduction. Rather, I grant that a proponent of Nagel’s approach can handle several of these problems but that, nevertheless, Nagel’s general way of thinking about epistemic reduction in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Generalizing empirical adequacy I: multiplicity and approximation.Sebastian Lutz - 2014 - Synthese 191 (14):3195-3225.
    I provide an explicit formulation of empirical adequacy, the central concept of constructive empiricism, and point out a number of problems. Based on one of the inspirations for empirical adequacy, I generalize the notion of a theory to avoid implausible presumptions about the relation of theoretical concepts and observations, and generalize empirical adequacy with the help of approximation sets to allow for lack of knowledge, approximations, and successive gain of knowledge and precision. As a test case, I provide an application (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Scientific Theories Could Not Be.Hans Halvorson - 2012 - Philosophy of Science 79 (2):183-206.
    According to the semantic view of scientific theories, theories are classes of models. I show that this view -- if taken seriously as a formal explication -- leads to absurdities. In particular, this view equates theories that are truly distinct, and it distinguishes theories that are truly equivalent. Furthermore, the semantic view lacks the resources to explicate interesting theoretical relations, such as embeddability of one theory into another. The untenability of the semantic view -- as currently formulated -- threatens to (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • The Metamathematics of Putnam’s Model-Theoretic Arguments.Tim Button - 2011 - Erkenntnis 74 (3):321-349.
    Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted models. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I examine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to metamathematical challenges.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The theory of modules of separably closed fields. I.Pilar Dellunde, Françoise Delon & Françoise Point - 2002 - Journal of Symbolic Logic 67 (3):997-1015.
    We consider separably closed fields of characteristic $p > 0$ and fixed imperfection degree as modules over a skew polynomial ring. We axiomatize the corresponding theory and we show that it is complete and that it admits quantifier elimination in the usual module language augmented with additive functions which are the analog of the $p$-component functions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What’s Right with a Syntactic Approach to Theories and Models?Sebastian Lutz - 2010 - Erkenntnis (S8):1-18.
    Syntactic approaches in the philosophy of science, which are based on formalizations in predicate logic, are often considered in principle inferior to semantic approaches, which are based on formalizations with the help of structures. To compare the two kinds of approach, I identify some ambiguities in common semantic accounts and explicate the concept of a structure in a way that avoids hidden references to a specific vocabulary. From there, I argue that contrary to common opinion (i) unintended models do not (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Hybrid logic meets if modal logic.Tero Tulenheimo - 2009 - Journal of Logic, Language and Information 18 (4):559-591.
    The hybrid logic and the independence friendly modal logic IFML are compared for their expressive powers. We introduce a logic IFML c having a non-standard syntax and a compositional semantics; in terms of this logic a syntactic fragment of IFML is singled out, denoted IFML c . (In the Appendix it is shown that the game-theoretic semantics of IFML c coincides with the compositional semantics of IFML c .) The hybrid logic is proven to be strictly more expressive than IFML (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The implicit definition of the set-concept.F. A. Muller - 2004 - Synthese 138 (3):417 - 451.
    Once Hilbert asserted that the axioms of a theory `define` theprimitive concepts of its language `implicitly''. Thus whensomeone inquires about the meaning of the set-concept, thestandard response reads that axiomatic set-theory defines itimplicitly and that is the end of it. But can we explainthis assertion in a manner that meets minimum standards ofphilosophical scrutiny? Is Jané (2001) wrong when hesays that implicit definability is ``an obscure notion''''? Doesan explanation of it presuppose any particular view on meaning?Is it not a scandal (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetric relations, symmetric theories, and Pythagrapheanism.Tim Button - 2022 - Philosophy and Phenomenological Research (3):583-612.
    It is a metaphysical orthodoxy that interesting non-symmetric relations cannot be reduced to symmetric ones. This orthodoxy is wrong. I show this by exploring the expressive power of symmetric theories, i.e. theories which use only symmetric predicates. Such theories are powerful enough to raise the possibility of Pythagrapheanism, i.e. the possibility that the world is just a vast, unlabelled, undirected graph.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth and Proof without Models: A Development and Justification of the Truth-valuational Approach (2nd edition).Hanoch Ben-Yami - manuscript
    I explain why model theory is unsatisfactory as a semantic theory and has drawbacks as a tool for proofs on logic systems. I then motivate and develop an alternative, the truth-valuational substitutional approach (TVS), and prove with it the soundness and completeness of the first order Predicate Calculus with identity and of Modal Propositional Calculus. Modal logic is developed without recourse to possible worlds. Along the way I answer a variety of difficulties that have been raised against TVS and show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Avicenna on Syllogisms Composed of Opposite Premises.Behnam Zolghadr - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 433-442.
    This article is about Avicenna’s account of syllogisms comprising opposite premises. We examine the applications and the truth conditions of these syllogisms. Finally, we discuss the relation between these syllogisms and the principle of non-contradiction.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Generalization of Definitional Equivalence to Languages with Non-Disjoint Signatures.Koen Lefever & Gergely Székely - unknown
    For simplicity, most of the literature introduces the concept of definitional equivalence only to languages with disjoint signatures. In a recent paper, Barrett and Halvorson introduce a straightforward generalization to languages with non-disjoint signatures and they show that their generalization is not equivalent to intertranslatability in general. In this paper,we show that their generalization is not transitive and hence it is not an equivalence relation. Then we introduce the Andréka and Németi generalization as one of the many equivalent formulations for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definable categorical equivalence.Laurenz Hudetz - 2019 - Philosophy of Science 86 (1):47-75.
    This article proposes to explicate theoretical equivalence by supplementing formal equivalence criteria with preservation conditions concerning interpretation. I argue that both the internal structure of models and choices of morphisms are aspects of formalisms that are relevant when it comes to their interpretation. Hence, a formal criterion suitable for being supplemented with preservation conditions concerning interpretation should take these two aspects into account. The two currently most important criteria—gener-alized definitional equivalence (Morita equivalence) and categorical equivalence—are not optimal in this respect. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Harmonious logic: Craig’s interpolation theorem and its descendants.Solomon Feferman - 2008 - Synthese 164 (3):341-357.
    Though deceptively simple and plausible on the face of it, Craig's interpolation theorem has proved to be a central logical property that has been used to reveal a deep harmony between the syntax and semantics of first order logic. Craig's theorem was generalized soon after by Lyndon, with application to the characterization of first order properties preserved under homomorphism. After retracing the early history, this article is mainly devoted to a survey of subsequent generalizations and applications, especially of many-sorted interpolation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations